期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A generalized deep neural network approach for improving resolution of fluorescence microscopy images
1
作者 Zichen Jin Qing He +1 位作者 Yang Liu Kaige Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期53-65,共13页
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo... Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels. 展开更多
关键词 Deep learning super-resolution imaging generalized model framework generation adversarial networks image reconstruction.
原文传递
Multi3D:3D-aware multimodal image synthesis
2
作者 Wenyang Zhou Lu Yuan Taijiang Mu 《Computational Visual Media》 CSCD 2024年第6期1205-1217,共13页
3D-aware image synthesis has attained high quality and robust 3D consistency.Existing 3D controllable generative models are designed to synthesize 3D-aware images through a single modality,such as 2D segmentation or s... 3D-aware image synthesis has attained high quality and robust 3D consistency.Existing 3D controllable generative models are designed to synthesize 3D-aware images through a single modality,such as 2D segmentation or sketches,but lack the ability to finely control generated content,such as texture and age.In pursuit of enhancing user-guided controllability,we propose Multi3D,a 3D-aware controllable image synthesis model that supports multi-modal input.Our model can govern the geometry of the generated image using a 2D label map,such as a segmentation or sketch map,while concurrently regulating the appearance of the generated image through a textual description.To demonstrate the effectiveness of our method,we have conducted experiments on multiple datasets,including CelebAMask-HQ,AFHQ-cat,and shapenet-car.Qualitative and quantitative evaluations show that our method outperforms existing state-of-the-art methods. 展开更多
关键词 generate adversarial networks(GANs) neural radiation field(NeRF) 3D-aware image synthesis controllable generation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部