With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavi...With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory.展开更多
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ...The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.展开更多
BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety d...BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff.展开更多
The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environmen...The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.展开更多
The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bam...The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.展开更多
We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method...We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.展开更多
Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in o...Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.展开更多
This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curric...This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curricula,it elucidates its advantages and operational mechanisms in interdisciplinary PBL.Combining case studies and empirical research,the investigation proposes implementation pathways and strategies for the generative AI-enhanced interdisciplinary PBL model,detailing specific applications across three phases:project preparation,implementation,and evaluation.The research demonstrates that generative AI-enabled interdisciplinary project-based learning can effectively enhance students’learning motivation,interdisciplinary thinking capabilities,and innovative competencies,providing new conceptual frameworks and practical approaches for educational model innovation.展开更多
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin...Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.展开更多
The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ...The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.展开更多
This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financ...This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
Panoramic images, offering a 360-degree view, are essential in virtual reality(VR) and augmented reality(AR), enhancing realism with high-quality textures. However, acquiring complete and high-quality panoramic textur...Panoramic images, offering a 360-degree view, are essential in virtual reality(VR) and augmented reality(AR), enhancing realism with high-quality textures. However, acquiring complete and high-quality panoramic textures is challenging. This paper introduces a method using generative adversarial networks(GANs) and the contrastive language-image pretraining(CLIP) model to restore and control texture in panoramic images. The GAN model captures complex structures and maintains consistency, while CLIP enables fine-grained texture control via semantic text-image associations. GAN inversion optimizes latent codes for precise texture details. The resulting low dynamic range(LDR) images are converted to high dynamic range(HDR) using the Blender engine for seamless texture blending. Experimental results demonstrate the effectiveness and flexibility of this method in panoramic texture restoration and generation.展开更多
According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are prese...According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are presented here in detail.Using this method,the original bore data go through Delaunay triangulation to generate irregular triangular network on the surface,and then links stratum segments on the adjoining bores in session to form tri-prisms which would be pinched out.Finally stratified 3D geologic body model is built by an iterated search which searches for consecutive layer of the same property.The result shows that this method can effectively simulate stratified stratum modeling.展开更多
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood e...In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method.展开更多
Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the applic...Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.展开更多
As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ...As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.展开更多
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m...This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.展开更多
In this paper, we study the higher dimensional nonlinear Rossby waves under the generalized beta effect.Using methods of the multiple scales and weak nonlinear perturbation expansions [Q. S. Liu, et al., Phys. Lett. A...In this paper, we study the higher dimensional nonlinear Rossby waves under the generalized beta effect.Using methods of the multiple scales and weak nonlinear perturbation expansions [Q. S. Liu, et al., Phys. Lett. A383(2019) 514], we derive a new(2 + 1)-dimensional generalized Boussinesq equation from the barotropic potential vorticity equation. Based on bifurcation theory of planar dynamical systems and the qualitative theory of ordinary differential equations, the dynamical analysis and exact traveling wave solutions of the new generalized Boussinesq equation are obtained. Moreover, we provide the numerical simulations of these exact solutions under some conditions of all parameters. The numerical results show that these traveling wave solutions are all the Rossby solitary waves.展开更多
基金Project supported by the Guangdong Basic and Applied Basic Research Foundation of China(No.2023A1515012809)the Natural Science Foundation of Shaanxi Province of China(No.2023-JC-YB-073)the Fundamental Research Funds for the Central Universities of China(No.D5000230066)。
文摘With the miniaturization of devices and the development of modern heating technologies,the generalization of heat conduction and thermoelastic coupling has become crucial,effectively emulating the thermodynamic behavior of materials in ultrashort time scales.Theoretically,generalized heat conductive models are considered in this work.By analogy with mechanical viscoelastic models,this paper further enriches the heat conduction models and gives their one-dimensional physical expression.Numerically,the transient thermoelastic response of the slim strip material under thermal shock is investigated by applying the proposed models.First,the analytical solution in the Laplace domain is obtained by the Laplace transform.Then,the numerical results of the transient responses are obtained by the numerical inverse Laplace transform.Finally,the transient responses of different models are analyzed and compared,and the effects of material parameters are discussed.This work not only opens up new research perspectives on generalized heat conductive and thermoelastic coupling theories,but also is expected to be beneficial for the deeper understanding of the heat wave theory.
基金Projects(52008403,52378421)supported by the National Natural Science Foundation of ChinaProject(2022-Key-10)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(202207)supported by the Hunan Provincial Transportation Science and Technology,China。
文摘The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.
基金Supported by the Henan Provincial Health Commission,No.232102310145.
文摘BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff.
基金supported by the Fujian Provincial Science and Technology Program“University-Industry Cooperation Project”(2024Y4015)National Key R&D Plan of Strategic International Scientific and Technological Innovation Cooperation Project(2018YFE0207800).
文摘The increasing frequency of extreme weather events raises the likelihood of forest wildfires.Therefore,establishing an effective fire prediction model is vital for protecting human life and property,and the environment.This study aims to build a prediction model to understand the spatial characteristics and piecewise effects of forest fire drivers.Using monthly grid data from 2006 to 2020,a modeling study analyzed fire occurrences during the September to April fire season in Fujian Province,China.We compared the fitting performance of the logistic regression model(LRM),the generalized additive logistic model(GALM),and the spatial generalized additive logistic model(SGALM).The results indicate that SGALMs had the best fitting results and the highest prediction accuracy.Meteorological factors significantly impacted forest fires in Fujian Province.Areas with high fire incidence were mainly concentrated in the northwest and southeast.SGALMs improved the fitting effect of fire prediction models by considering spatial effects and the flexible fitting ability of nonlinear interpretation.This model provides piecewise interpretations of forest wildfire occurrences,which can be valuable for relevant departments and will assist forest managers in refining prevention measures based on temporal and spatial differences.
基金supported by the Ministry of Agriculture,Forestry,and Fisheries of Japan (25093 C)JSPS KAKENHI (JP23H02262)
文摘The growth of Sakhalin fir(Abies sachalinen-sis)seedlings,an important forest tree species in northern Hokkaido,Japan,is significantly affected by competition from surrounding vegetation,especially evergreen dwarf bamboo.In this study,we investigated the height and root collar diameter(RCD)growth of Sakhalin fir seedlings under various degrees of cover by deciduous vegetation and evergreen dwarf bamboo.Generalized additive models were used to quantify the effects of canopy cover and forest floor cover on the relative growth rates of these two parameters.The canopy cover of Sakhalin fir seedlings had a nonlin-ear negative effect on both the height growth of seedlings in the subsequent year and the RCD growth in the current year,given the general growth pattern in this species,where height growth ceases in early summer and RCD growth con-tinues until autumn.Height growth declined sharply after the canopy cover rate exceeded 50%,while RCD growth declined rapidly between 0 and 50%canopy cover rate.The forest floor cover had a greater negative impact on RCD growth than on height growth.These results suggested that Sakhalin fir seedlings respond to vegetative competition by prioritizing height growth for light acquisition at the expense of diameter growth and possibly root growth for below-ground competition.The cover of evergreen dwarf bamboo reduced the height growth of fir seedlings significantly more than the cover of deciduous vegetation.This difference is likely due to the timing of light availability.When competing with deciduous vegetation,Sakhalin fir seedlings exposed to light during the post-snow melt and early spring before the development of the deciduous vegetation canopy can photosynthesize more effectively,leading to greater height growth.The results of this study highlighted the importance of vegetation control considering the type of vegetation for successful Sakhalin fir reforestation.Adjusting the intensity and timing of weeding based on the presence and abundance of dwarf bamboo and other competing vegetation could potentially reduce weeding costs and increase biodiversity in reforested areas.
基金supported by the National Natural Science Foundation of China(Grant No.11974420).
文摘We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.
基金supported by the National Nature Science Foundation of China (Nos. 61671362 and 62071366)。
文摘Two dimensional(2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder(CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions(M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections,effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure.The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
文摘This study explores a novel educational model of generative AI-empowered interdisciplinary project-based learning(PBL).By analyzing the current applications of generative AI technology in information technology curricula,it elucidates its advantages and operational mechanisms in interdisciplinary PBL.Combining case studies and empirical research,the investigation proposes implementation pathways and strategies for the generative AI-enhanced interdisciplinary PBL model,detailing specific applications across three phases:project preparation,implementation,and evaluation.The research demonstrates that generative AI-enabled interdisciplinary project-based learning can effectively enhance students’learning motivation,interdisciplinary thinking capabilities,and innovative competencies,providing new conceptual frameworks and practical approaches for educational model innovation.
基金supported by Shanghai Science and Technology Commission Project(No.21DZ1201502)Shanghai Municipal Bureau of Ecology and Environment(Shanghai Environ-mental Science[2023]No.40)+1 种基金the Interdisciplinary Joint Research Project of Tongji University(No.2022-4-YB-12)Shanghai Science and Technology Commission Project(No.22DZ2200200).
文摘Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.
文摘The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.
文摘This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
文摘Panoramic images, offering a 360-degree view, are essential in virtual reality(VR) and augmented reality(AR), enhancing realism with high-quality textures. However, acquiring complete and high-quality panoramic textures is challenging. This paper introduces a method using generative adversarial networks(GANs) and the contrastive language-image pretraining(CLIP) model to restore and control texture in panoramic images. The GAN model captures complex structures and maintains consistency, while CLIP enables fine-grained texture control via semantic text-image associations. GAN inversion optimizes latent codes for precise texture details. The resulting low dynamic range(LDR) images are converted to high dynamic range(HDR) using the Blender engine for seamless texture blending. Experimental results demonstrate the effectiveness and flexibility of this method in panoramic texture restoration and generation.
文摘According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are presented here in detail.Using this method,the original bore data go through Delaunay triangulation to generate irregular triangular network on the surface,and then links stratum segments on the adjoining bores in session to form tri-prisms which would be pinched out.Finally stratified 3D geologic body model is built by an iterated search which searches for consecutive layer of the same property.The result shows that this method can effectively simulate stratified stratum modeling.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
基金The National Natural Science Foundation of China(No.11171065)the Natural Science Foundation of Jiangsu Province(No.BK2011058)
文摘In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method.
基金supported by the National Natural Science Foundation of China(Grant No.81974355 and No.82172524).
文摘Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.
文摘As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.
基金supported by the National Natural Science Youth Foundation of China(Grant No.51309101)the Henan Province Major Scientific and Technological Projects(Grant No.172102210372)the Cooperative Project of Production,Teaching and Research in Henan Province(Grant No.18210700031)
文摘This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11562014,11762011,11671101,71471020,51839002the Natural Science Foundation of Inner Mongolia under Grant No.2017MS0108+4 种基金Hunan Provincial Natural Science Foundation of China under Grant No.2016JJ2061the Scientific Research Fund of Hunan Provincial Education Department under Grant No.18A325the Construct Program of the Key Discipline in Hunan Province under Grant No.201176the Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province under Grant No.2014207Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering of Changsha University of Science and Technology under Grant No.018MMAEZD191
文摘In this paper, we study the higher dimensional nonlinear Rossby waves under the generalized beta effect.Using methods of the multiple scales and weak nonlinear perturbation expansions [Q. S. Liu, et al., Phys. Lett. A383(2019) 514], we derive a new(2 + 1)-dimensional generalized Boussinesq equation from the barotropic potential vorticity equation. Based on bifurcation theory of planar dynamical systems and the qualitative theory of ordinary differential equations, the dynamical analysis and exact traveling wave solutions of the new generalized Boussinesq equation are obtained. Moreover, we provide the numerical simulations of these exact solutions under some conditions of all parameters. The numerical results show that these traveling wave solutions are all the Rossby solitary waves.