We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f...In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.展开更多
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equat...In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.展开更多
In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-...In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-function type method, so the (G'/G)?-expansion method is considered as a special deformation application of the transformed rational function method. We demonstrate that all solutions obtained by the (G'/G)?-expansion method were found by the generalized tanh-function type method. As applications, we consider mKdV equation. Compared with the (G'/G) -expansion method, the generalized tanh-function type method gives new and more abundant solutions.展开更多
GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characte...GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.展开更多
In this paper we propose a collocation method for solving Lane-Emden type equation which is nonlinear or-dinary differential equation on the semi-infinite domain. This equation is categorized as singular initial value...In this paper we propose a collocation method for solving Lane-Emden type equation which is nonlinear or-dinary differential equation on the semi-infinite domain. This equation is categorized as singular initial value problems. We solve this equation by the generalized Laguerre polynomial collocation method based on Her-mite-Gauss nodes. This method solves the problem on the semi-infinite domain without truncating it to a fi-nite domain and transforming domain of the problem to a finite domain. In addition, this method reduces so-lution of the problem to solution of a system of algebraic equations.展开更多
In this paper the definitions of generalized transfer functios of control system and itscontinuity are presented.Using generalized transfer function as a tool,a set of theorems fordeciding movement stability have been...In this paper the definitions of generalized transfer functios of control system and itscontinuity are presented.Using generalized transfer function as a tool,a set of theorems fordeciding movement stability have been constructed.Thus basing understanding of thecharacteristics of a control dynamics system on its measured procedure will simplify thedecision method of movement stability problems.展开更多
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic functio...By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.展开更多
This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of ...This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. T...A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. To avoid numerical oscillations caused by the dispersion term in the KdV equation, two numerical techniques were introduced to improve the numerical stability. The Legendre, Chebyshev and Hermite polynomials were used as the basis functions. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection- diffusion problem) and KdV equation(single solitary and 2-solitary wave problems), where analytical solutions are available for comparison. Numerical results agree very well with the corresponding analytical solutions in all cases.展开更多
In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to deri...In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.展开更多
Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generali...Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.展开更多
In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burger...In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burgers-KdV) and Burger-Fisher equations. Our work is motivated by the fact that the (G'/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)En...This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.展开更多
The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real...The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real-power is used to Combined with the global properties of the noise-free system, the evolutionary process of the tran- sient PDFs is revealed. The results show that stochastic P-bifurcation occurs when the system parameter varies in the response analysis and the stationary PDF evolves from bimodal to unimodal along the unstable manifold during the bifurcation.展开更多
The stress field in granular soils heap(including piled coal) will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations.Because the f...The stress field in granular soils heap(including piled coal) will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations.Because the former method is not reliable as pressure cells instrumented on the interface between piled coal and the underlying soft soil do not work well, results from numerical methods alone are necessary to be doubly checked with one more method before they are extended to more complex cases. The generalized stress field in granular soils heap is analyzed with Rayleighe Ritz method. The problem is divided into two cases: case A without horizontal constraint on the base and case B with horizontal constraint on the base. In both cases, the displacement functions u(x, y) and v(x, y) are assumed to be cubic polynomials with 12 undetermined parameters, which will satisfy the Cauchy’s partial differential equations, generalized Hooke’s law and boundary equations. A function is built with the Rayleighe Ritz method according to the principle of minimum potential energy, and the problem is converted into solving two undetermined parameters through the variation of the function, while the other parameters are expressed in terms of these two parameters. By comparison of results from the Rayleighe Ritz method and numerical simulations, it is demonstrated that the Rayleighe Ritz method is feasible to study the generalized stress field in granular soils heap. Solutions from numerical methods are verified before being extended to more complicated cases.展开更多
In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik...In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.展开更多
Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational pr...Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.展开更多
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11071177)
文摘In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.
基金The NSF(11001042) of ChinaSRFDP(20100043120001)FRFCU(09QNJJ002)
文摘In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.
文摘In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-function type method, so the (G'/G)?-expansion method is considered as a special deformation application of the transformed rational function method. We demonstrate that all solutions obtained by the (G'/G)?-expansion method were found by the generalized tanh-function type method. As applications, we consider mKdV equation. Compared with the (G'/G) -expansion method, the generalized tanh-function type method gives new and more abundant solutions.
文摘GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.
文摘In this paper we propose a collocation method for solving Lane-Emden type equation which is nonlinear or-dinary differential equation on the semi-infinite domain. This equation is categorized as singular initial value problems. We solve this equation by the generalized Laguerre polynomial collocation method based on Her-mite-Gauss nodes. This method solves the problem on the semi-infinite domain without truncating it to a fi-nite domain and transforming domain of the problem to a finite domain. In addition, this method reduces so-lution of the problem to solution of a system of algebraic equations.
文摘In this paper the definitions of generalized transfer functios of control system and itscontinuity are presented.Using generalized transfer function as a tool,a set of theorems fordeciding movement stability have been constructed.Thus basing understanding of thecharacteristics of a control dynamics system on its measured procedure will simplify thedecision method of movement stability problems.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB418304)the National Natural Science Foundation of China (Grant No 40405010)
文摘By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.
文摘This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金Project supported by the National Natural Science Foundation of China (No.10272118) the Hong Kong Polytechnic University Research Grant (No.A-PE28) the Research Fund for the Doctoral Program of Ministry of Education of China (No.20020558013)
文摘A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. To avoid numerical oscillations caused by the dispersion term in the KdV equation, two numerical techniques were introduced to improve the numerical stability. The Legendre, Chebyshev and Hermite polynomials were used as the basis functions. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection- diffusion problem) and KdV equation(single solitary and 2-solitary wave problems), where analytical solutions are available for comparison. Numerical results agree very well with the corresponding analytical solutions in all cases.
基金supported by the National Natural Science Foundation of China(Nos.12101572,12371256)2023 Shanxi Province Graduate Innovation Project(No.2023KY614)the 19th Graduate Science and Technology Project of North University of China(No.20231943)。
文摘In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.
基金The project supported partially by the State Key Basic Research Program of China under Grant No. 2004 CB 318000The authors would like to thank the referee for his/her valuable suggestions.
文摘Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.
文摘In this work, the (G'/G)-expansion method is proposed for constructing more general exact solutions of two general form of Burgers type equation arising in fluid mechanics namely, Burgers-Korteweg-de Vries (Burgers-KdV) and Burger-Fisher equations. Our work is motivated by the fact that the (G'/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
文摘This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.
基金Project supported by the National Natural Science Foundation of China(Nos.11172233,11302169,11302170,and 11472212)the Fundamental Research Funds for the Central Universities(No.3102014JCQ01079)
文摘The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real-power is used to Combined with the global properties of the noise-free system, the evolutionary process of the tran- sient PDFs is revealed. The results show that stochastic P-bifurcation occurs when the system parameter varies in the response analysis and the stationary PDF evolves from bimodal to unimodal along the unstable manifold during the bifurcation.
文摘The stress field in granular soils heap(including piled coal) will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations.Because the former method is not reliable as pressure cells instrumented on the interface between piled coal and the underlying soft soil do not work well, results from numerical methods alone are necessary to be doubly checked with one more method before they are extended to more complex cases. The generalized stress field in granular soils heap is analyzed with Rayleighe Ritz method. The problem is divided into two cases: case A without horizontal constraint on the base and case B with horizontal constraint on the base. In both cases, the displacement functions u(x, y) and v(x, y) are assumed to be cubic polynomials with 12 undetermined parameters, which will satisfy the Cauchy’s partial differential equations, generalized Hooke’s law and boundary equations. A function is built with the Rayleighe Ritz method according to the principle of minimum potential energy, and the problem is converted into solving two undetermined parameters through the variation of the function, while the other parameters are expressed in terms of these two parameters. By comparison of results from the Rayleighe Ritz method and numerical simulations, it is demonstrated that the Rayleighe Ritz method is feasible to study the generalized stress field in granular soils heap. Solutions from numerical methods are verified before being extended to more complicated cases.
基金The Scientific Research Foundation (QKJA2010011) of Nanjing Institute of Technology
文摘In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.
文摘Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.