期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Norm Properties of Y-numerical Radii 被引量:1
1
作者 ZHANG Xiao-yan 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第1期69-76,共8页
Given an n×n complex matrix A and an n-dimensional complex vector y=(ν1 , ··· , νn ), the y-numerical radius of A is the nonnegative quantity ry(A)=max{n∑j=1ν*jAx︱:Axj︱: x*jxj=1,xj ∈Cn}.Here... Given an n×n complex matrix A and an n-dimensional complex vector y=(ν1 , ··· , νn ), the y-numerical radius of A is the nonnegative quantity ry(A)=max{n∑j=1ν*jAx︱:Axj︱: x*jxj=1,xj ∈Cn}.Here Cn is an n-dimensional linear space overthe complex field C. For y = (1, 0, ··· , 0) it reduces to the classical radius r(A) =max {|x*Ax|: x*x=1}.We show that ry is a generalized matrix norm if and only ifn∑j=1νj≠ 0.Next, we study some properties of the y-numerical radius of matrices andvectors with non-negative entries. 展开更多
关键词 numerical range numerical radius generalized matrix norm
在线阅读 下载PDF
On y-numerical Radius and Its Stability
2
作者 LIU Xiu-sheng 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第4期559-564,共6页
Let A be an n×n complex matrix,and let y =(α1,...,αn) be an n-dimensional complex vector.The y-numerical radius of A,denoted by ry(A),is defined follows:r_y(A) = max {|sum form i=1 to n α_ix_i~* Ax_i|:x_i~* x_... Let A be an n×n complex matrix,and let y =(α1,...,αn) be an n-dimensional complex vector.The y-numerical radius of A,denoted by ry(A),is defined follows:r_y(A) = max {|sum form i=1 to n α_ix_i~* Ax_i|:x_i~* x_i = 1,x_i ∈ C^n},where Cn is an n-dimensional vector space over complex field C.In this paper we studynorm properties and stability of y-numerical radius. 展开更多
关键词 y-numerical radius SEMInorm generalized matrix norm
在线阅读 下载PDF
Expansive Behaviours for Homeomorphisms of tvs-Cone Metric Spaces
3
作者 Xun GE 《Journal of Mathematical Research with Applications》 CSCD 2016年第3期363-368,共6页
Let f be a homeomorphism of a compact tvs-cone metric space. In this paper,we show that f is tvs-cone expansive if and only if f has a generator. Further, it is proved that if f is tvs-cone expansive, then the set of ... Let f be a homeomorphism of a compact tvs-cone metric space. In this paper,we show that f is tvs-cone expansive if and only if f has a generator. Further, it is proved that if f is tvs-cone expansive, then the set of points having converging semiorbits under f is a countable set. Results of this paper improve some expansive homeomorphisms theorems in topological dynamics, which will help to research dynamical properties for homeomorphisms of tvs-cone metric spaces. 展开更多
关键词 topological dynamical generator finitely mathematics implies hence instead normed nonempty
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部