Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring...Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring R. We determine the conditionsunder which elements of Ks(R) are pseudopolar. Assume that R is a local ring. It isshown that A ∈ Ks(R) is pseudopolar if and only if A is invertible or A^2 ∈ J(Ks(R))or A is similar to a diagonal matrix [ u 0 0 j ]; where lu -rj and lj-ru are injectiveand u 2 U(R) and j ∈ J(R). Furthermore, several equivalent conditions for Ks(R)over a local ring R to be pseudopolar are obtained.展开更多
Let R be a ring and J(R) the Jacobson radical. An element a of R is called(strongly) J-clean if there is an idempotent e ∈ R and w ∈ J(R) such that a = e + w(and ew = we). The ring R is called a(strongly)...Let R be a ring and J(R) the Jacobson radical. An element a of R is called(strongly) J-clean if there is an idempotent e ∈ R and w ∈ J(R) such that a = e + w(and ew = we). The ring R is called a(strongly) J-clean ring provided that every one of its elements is(strongly) J-clean. We discuss, in the present paper,some properties of J-clean rings and strongly J-clean rings. Moreover, we investigate J-cleanness and strongly J-cleanness of generalized matrix rings. Some known results are also extended.展开更多
A ring R is Zhou nil-clean if every element in R is the sum of two tripotents and a nilpotent that commute. Homomorphic images of Zhou nil-clean rings are explored. We prove that a ring R is Zhou nil-clean if and only...A ring R is Zhou nil-clean if every element in R is the sum of two tripotents and a nilpotent that commute. Homomorphic images of Zhou nil-clean rings are explored. We prove that a ring R is Zhou nil-clean if and only if 30 ∈ R is nilpotent and R/30R is Zhou nil-clean, if and only if R/BM(R) is 5-potent and BM(R) is nil, if and only if J(R) is nil and R/J(R) is isomorphic to a Boolean ring, a Yaqub ring, a Bell ring or a direct product of such rings. By means of homomorphic images, we completely determine when the generalized matrix ring is Zhou nil-clean. We prove that the generalized matrix ring Mn(R; s) is Zhou nil-clean if and only if R is Zhou nil-clean and s ∈ J(R).展开更多
文摘Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring R. We determine the conditionsunder which elements of Ks(R) are pseudopolar. Assume that R is a local ring. It isshown that A ∈ Ks(R) is pseudopolar if and only if A is invertible or A^2 ∈ J(Ks(R))or A is similar to a diagonal matrix [ u 0 0 j ]; where lu -rj and lj-ru are injectiveand u 2 U(R) and j ∈ J(R). Furthermore, several equivalent conditions for Ks(R)over a local ring R to be pseudopolar are obtained.
文摘Let R be a ring and J(R) the Jacobson radical. An element a of R is called(strongly) J-clean if there is an idempotent e ∈ R and w ∈ J(R) such that a = e + w(and ew = we). The ring R is called a(strongly) J-clean ring provided that every one of its elements is(strongly) J-clean. We discuss, in the present paper,some properties of J-clean rings and strongly J-clean rings. Moreover, we investigate J-cleanness and strongly J-cleanness of generalized matrix rings. Some known results are also extended.
基金The authors are grateful to the referee for his/her careful the paper, and for the invaluable comments which improve our presentation reading of author H.Y. Chen was supported by the Natural Science Foundation of Zhejiang (No. LY17A010018), China. The first Province
文摘A ring R is Zhou nil-clean if every element in R is the sum of two tripotents and a nilpotent that commute. Homomorphic images of Zhou nil-clean rings are explored. We prove that a ring R is Zhou nil-clean if and only if 30 ∈ R is nilpotent and R/30R is Zhou nil-clean, if and only if R/BM(R) is 5-potent and BM(R) is nil, if and only if J(R) is nil and R/J(R) is isomorphic to a Boolean ring, a Yaqub ring, a Bell ring or a direct product of such rings. By means of homomorphic images, we completely determine when the generalized matrix ring is Zhou nil-clean. We prove that the generalized matrix ring Mn(R; s) is Zhou nil-clean if and only if R is Zhou nil-clean and s ∈ J(R).