We introduce a new method to study the asymptotic behavior of solutions on the basis of the continuation theory for k-set contractions.We apply this technique to show the existence of nontrivial decaying solutions to ...We introduce a new method to study the asymptotic behavior of solutions on the basis of the continuation theory for k-set contractions.We apply this technique to show the existence of nontrivial decaying solutions to the sup-linear generalized Emden-Fowler equation and the existence of asymptotically linear solutions to the sub-linear one.展开更多
Notion of metrically regular property and certain types of point-based approximations are used for solving the nonsmooth generalized equation f(x)+F(x)?0,where X and Y are Banach spaces,and U is an open subset of X,f:...Notion of metrically regular property and certain types of point-based approximations are used for solving the nonsmooth generalized equation f(x)+F(x)?0,where X and Y are Banach spaces,and U is an open subset of X,f:U→Y is a nonsmooth function and F:X■Y is a set-valued mapping with closed graph.We introduce a confined Newton-type method for solving the above nonsmooth generalized equation and analyze the semilocal and local convergence of this method.Specifically,under the point-based approximation of f on U and metrically regular property of f+F,we present quadratic rate of convergence of this method.Furthermore,superlinear rate of convergence of this method is provided under the conditions that f admits p-point-based approximation on U and f+F is metrically regular.An example of nonsmooth functions that have p-point-based approximation is given.Moreover,a numerical experiment is given which illustrates the theoretical result.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain...Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff E...In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff Equations, and two examples are presented to illustrate the application of the results.展开更多
A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic...A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic HECDSA, variants, two HECDSA equations and a 4-tuple HECDSA scheme, and puts forward a generalized equation for HECDSA. From this generalized equation, seven general HECDSA types are derived based on the efficiency requirements. Meanwhile, the securities of these general HECDSA types are analyzed in detail.展开更多
The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized ...The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.展开更多
This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a n...This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.展开更多
This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Zakharov equations {iu +uxx = uv + |u|^2u, vtt-vxx=(|u|^2)xx.First, we prove the existence of a smooth c...This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Zakharov equations {iu +uxx = uv + |u|^2u, vtt-vxx=(|u|^2)xx.First, we prove the existence of a smooth curve of positive traveling wave solutions of dnoidal type with a fixed fundamental period L for the generalized Zakharov equations. Then, by using the classical method proposed by Benjamin, Bona et al., we show that this solution is orbitally stable by perturbations with period L. The results on the orbital stability of periodic traveling wave solutions for the generalized Zakharov equations in this paper can be regarded as a perfect extension of the results of [15, 16, 19].展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
In this paper, the pseudo-differential operators and the generalized Lax equations in integrable systems are implemented in symbolic software Mathematica. A great deal of differential polynomials which appear in the p...In this paper, the pseudo-differential operators and the generalized Lax equations in integrable systems are implemented in symbolic software Mathematica. A great deal of differential polynomials which appear in the procedure are dealt with by differential characteristic chain method. Using the program, several classical examples are given.展开更多
In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a...In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a priori estimates of solution,we get theexistence of globally smooth solution.展开更多
In this study,we prove that modified diffusion equations,including the generalized Burgers'equation with variable coefficients,can be derived from the Black-Scholes equation with a time-dependent parameter based o...In this study,we prove that modified diffusion equations,including the generalized Burgers'equation with variable coefficients,can be derived from the Black-Scholes equation with a time-dependent parameter based on the propagator method known in quantum and statistical physics.The extension for the case of a local fractal derivative is also addressed and analyzed.展开更多
This article proves the logarithmically improved Serrin's criterion for solutions of the 3D generalized magneto-hydrodynamic equations in terms of the gradient of the velocity field, which can be regarded as improvem...This article proves the logarithmically improved Serrin's criterion for solutions of the 3D generalized magneto-hydrodynamic equations in terms of the gradient of the velocity field, which can be regarded as improvement of results in [10] (Luo Y W. On the regularity of generalized MHD equations. J Math Anal Appl, 2010, 365: 806-808) and [18] (Zhang Z J. Remarks on the regularity criteria for generalized MHD equations. J Math Anal Appl, 2011, 375:799 802).展开更多
In this paper, we studied the long-time properties of solutions of generalized Kirchhoff-type equation with strongly damped terms. Firstly, appropriate assumptions are made for the nonlinear source term <span style...In this paper, we studied the long-time properties of solutions of generalized Kirchhoff-type equation with strongly damped terms. Firstly, appropriate assumptions are made for the nonlinear source term <span style="white-space:nowrap;">g (u) and Kirchhoff stress term <span style="white-space:nowrap;">M (s) in the equation, and the existence and uniqueness of the solution are proved by using uniform prior estimates of time and Galerkin’s finite element method. Then, abounded absorption set B<sub>0k</sub> is obtained by prior estimation, and the Rellich-kondrachov’s compact embedding theorem is used to prove that the solution semigroup <span style="white-space:nowrap;">S (t) generated by the equation has a family of the global attractor <span style="white-space:nowrap;">A<sub>k</sub> in the phase space <img src="Edit_250265b5-40f0-4b6c-b669-958eb1938010.png" width="120" height="20" alt="" />. Finally, linearize the equation and verify that the semigroups are Frechet diifferentiable on E<sub>k</sub>. Then, the upper boundary estimation of the Hausdorff dimension and Fractal dimension of a family of the global attractor A<sub>k</sub> was obtained.展开更多
Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically inter...Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically interesting situations with potential symmetries are focused on, and the conservation laws for these equations in three physi- cally interesting cases are found by using the partial Lagrangian approach.展开更多
As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized...As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples.展开更多
Stochastic generalized porous media equation with jump is considered. The aim is to show the moment exponential stability and the almost certain exponential stability of the stochastic equation.
In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are est...In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.展开更多
The generalized Navier-Stokes equations with damping are considered.We will show that the generalized Navier-Stokes equations with damping |u|^β-1u have weak solutions for anyβ>1 and 0<α<5/4,and we will us...The generalized Navier-Stokes equations with damping are considered.We will show that the generalized Navier-Stokes equations with damping |u|^β-1u have weak solutions for anyβ>1 and 0<α<5/4,and we will use the Fourier splitting method to prove the L2 decay of weak solutions forβ>2 and 0<α<3/4.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.12001397,12171039)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2022KJ204).
文摘We introduce a new method to study the asymptotic behavior of solutions on the basis of the continuation theory for k-set contractions.We apply this technique to show the existence of nontrivial decaying solutions to the sup-linear generalized Emden-Fowler equation and the existence of asymptotically linear solutions to the sub-linear one.
基金supported by CAS-President International Fellowship Initiative (PIFI), Chinese Academy of Sciences, Beijing, Chinasupported by National Natural Science Foundation of China (Grants Nos. 11688101 and 11331012)
文摘Notion of metrically regular property and certain types of point-based approximations are used for solving the nonsmooth generalized equation f(x)+F(x)?0,where X and Y are Banach spaces,and U is an open subset of X,f:U→Y is a nonsmooth function and F:X■Y is a set-valued mapping with closed graph.We introduce a confined Newton-type method for solving the above nonsmooth generalized equation and analyze the semilocal and local convergence of this method.Specifically,under the point-based approximation of f on U and metrically regular property of f+F,we present quadratic rate of convergence of this method.Furthermore,superlinear rate of convergence of this method is provided under the conditions that f admits p-point-based approximation on U and f+F is metrically regular.An example of nonsmooth functions that have p-point-based approximation is given.Moreover,a numerical experiment is given which illustrates the theoretical result.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
基金the National Natural Science Foundation of China(10572021 and 10772025)the Doctoral Program Foundation of Institution of Higher Education,China(20040007022)
文摘In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff Equations, and two examples are presented to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (60763009)the Science and Technology Key Project of the Ministry of Education of China (207089)Zhejiang Natural Science Foundation of Outstanding Youth Team Project (R1090138)
文摘A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic HECDSA, variants, two HECDSA equations and a 4-tuple HECDSA scheme, and puts forward a generalized equation for HECDSA. From this generalized equation, seven general HECDSA types are derived based on the efficiency requirements. Meanwhile, the securities of these general HECDSA types are analyzed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.KYLX16-0414)
文摘The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)
文摘This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.
基金supported by the National Natural Science Foundation of China(11401122)Science and technology project of Qufu Normal University(xkj201607)
文摘This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Zakharov equations {iu +uxx = uv + |u|^2u, vtt-vxx=(|u|^2)xx.First, we prove the existence of a smooth curve of positive traveling wave solutions of dnoidal type with a fixed fundamental period L for the generalized Zakharov equations. Then, by using the classical method proposed by Benjamin, Bona et al., we show that this solution is orbitally stable by perturbations with period L. The results on the orbital stability of periodic traveling wave solutions for the generalized Zakharov equations in this paper can be regarded as a perfect extension of the results of [15, 16, 19].
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
基金The project supported by National Natural Science Foundation of China under Grant No.10401021
文摘In this paper, the pseudo-differential operators and the generalized Lax equations in integrable systems are implemented in symbolic software Mathematica. A great deal of differential polynomials which appear in the procedure are dealt with by differential characteristic chain method. Using the program, several classical examples are given.
文摘In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a priori estimates of solution,we get theexistence of globally smooth solution.
基金The authors would like to thank the anonymous referees for their useful comments and valuable suggestions.
文摘In this study,we prove that modified diffusion equations,including the generalized Burgers'equation with variable coefficients,can be derived from the Black-Scholes equation with a time-dependent parameter based on the propagator method known in quantum and statistical physics.The extension for the case of a local fractal derivative is also addressed and analyzed.
文摘This article proves the logarithmically improved Serrin's criterion for solutions of the 3D generalized magneto-hydrodynamic equations in terms of the gradient of the velocity field, which can be regarded as improvement of results in [10] (Luo Y W. On the regularity of generalized MHD equations. J Math Anal Appl, 2010, 365: 806-808) and [18] (Zhang Z J. Remarks on the regularity criteria for generalized MHD equations. J Math Anal Appl, 2011, 375:799 802).
文摘In this paper, we studied the long-time properties of solutions of generalized Kirchhoff-type equation with strongly damped terms. Firstly, appropriate assumptions are made for the nonlinear source term <span style="white-space:nowrap;">g (u) and Kirchhoff stress term <span style="white-space:nowrap;">M (s) in the equation, and the existence and uniqueness of the solution are proved by using uniform prior estimates of time and Galerkin’s finite element method. Then, abounded absorption set B<sub>0k</sub> is obtained by prior estimation, and the Rellich-kondrachov’s compact embedding theorem is used to prove that the solution semigroup <span style="white-space:nowrap;">S (t) generated by the equation has a family of the global attractor <span style="white-space:nowrap;">A<sub>k</sub> in the phase space <img src="Edit_250265b5-40f0-4b6c-b669-958eb1938010.png" width="120" height="20" alt="" />. Finally, linearize the equation and verify that the semigroups are Frechet diifferentiable on E<sub>k</sub>. Then, the upper boundary estimation of the Hausdorff dimension and Fractal dimension of a family of the global attractor A<sub>k</sub> was obtained.
文摘Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically interesting situations with potential symmetries are focused on, and the conservation laws for these equations in three physi- cally interesting cases are found by using the partial Lagrangian approach.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples.
基金Project supported by the Tianyuan Foundation of National Natural Science of China(No.11126079)the China Postdoctoral Science Foundation(No.2013M530559)the Fundamental Research Funds for the Central Universities(No.CDJRC10100011)
文摘Stochastic generalized porous media equation with jump is considered. The aim is to show the moment exponential stability and the almost certain exponential stability of the stochastic equation.
基金This work was supported by the Chinese Outstanding Youth Foundation(No.69925308)Program for Changjiang Scholars and Innovative ResearchTeam in University.
文摘In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.
文摘The generalized Navier-Stokes equations with damping are considered.We will show that the generalized Navier-Stokes equations with damping |u|^β-1u have weak solutions for anyβ>1 and 0<α<5/4,and we will use the Fourier splitting method to prove the L2 decay of weak solutions forβ>2 and 0<α<3/4.