In this paper,we construct an H1-conforming quadratic finite element on convex polygonal meshes using the generalized barycentric coordinates.The element has optimal approximation rates.Using this quadratic element,tw...In this paper,we construct an H1-conforming quadratic finite element on convex polygonal meshes using the generalized barycentric coordinates.The element has optimal approximation rates.Using this quadratic element,two stable discretizations for the Stokes equations are developed,which can be viewed as the extensions of the P2-P0 and the Q2-(discontinuous)P1 elements,respectively,to polygonal meshes.Numerical results are presented,which support our theoretical claims.展开更多
基金supported by the NSFC grant 11671210 and 12171244.
文摘In this paper,we construct an H1-conforming quadratic finite element on convex polygonal meshes using the generalized barycentric coordinates.The element has optimal approximation rates.Using this quadratic element,two stable discretizations for the Stokes equations are developed,which can be viewed as the extensions of the P2-P0 and the Q2-(discontinuous)P1 elements,respectively,to polygonal meshes.Numerical results are presented,which support our theoretical claims.