To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks o...To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
A novel pilot-aided ridge regression (RR) channel estimation for SC-FDE system on time-varying frequency selective fading channel is derived. Previous least square (LS) channel estimation, which does not consider and ...A novel pilot-aided ridge regression (RR) channel estimation for SC-FDE system on time-varying frequency selective fading channel is derived. Previous least square (LS) channel estimation, which does not consider and utilize the influence of noise, has poor performance when the observed signal is corrupted abnormally by noise. In order to overcome the inherent disadvantage of LS estimation, the proposed RR estimation uses the influence of noise to get better performance. The performance of this new estimator is examined. The numerical results are presented to show that the new estimation improves the accuracy of estimation especially in low channel signal-to-noise ratio (CSNR) level and outperforms LS estimation. In addition, the proposed RR estimation can get the gains of about 1dB compared with LS estimation.展开更多
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr...It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.展开更多
In this paper, we study the strong consistency for partitioning estimation of regression function under samples that axe φ-mixing sequences with identically distribution.Key words: nonparametric regression function; ...In this paper, we study the strong consistency for partitioning estimation of regression function under samples that axe φ-mixing sequences with identically distribution.Key words: nonparametric regression function; partitioning estimation; strong convergence;φ-mixing sequences.展开更多
The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how ...The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how to accurately estimate the SATLR in the regions with complex terrain and climatic condition has been a great challenge for researchers.The geographically weighted regression(GWR)model was applied in this paper to estimate the SATLR in China’s mainland,and then the assessment and validation for the GWR model were made.The spatial pattern of regression residuals which was identified by Moran’s Index indicated that the GWR model was broadly reasonable for the estimation of SATLR.The small mean absolute error(MAE)in all months indicated that the GWR model had a strong predictive ability for the surface air temperature.The comparison with previous studies for the seasonal mean SATLR further evidenced the accuracy of the estimation.Therefore,the GWR method has potential application for estimating the SATLR in a large region with complex terrain and climatic condition.展开更多
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n...In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.展开更多
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin...Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.展开更多
The application of high-performance imaging sensors in space-based space surveillance systems makes it possible to recognize space objects and estimate their poses using vision-based methods. In this paper, we propose...The application of high-performance imaging sensors in space-based space surveillance systems makes it possible to recognize space objects and estimate their poses using vision-based methods. In this paper, we proposed a kernel regression-based method for joint multi-view space object recognition and pose estimation. We built a new simulated satellite image dataset named BUAA-SID 1.5 to test our method using different image representations. We evaluated our method for recognition-only tasks, pose estimation-only tasks, and joint recognition and pose estimation tasks. Experimental results show that our method outperforms the state-of-the-arts in space object recognition, and can recognize space objects and estimate their poses effectively and robustly against noise and lighting conditions.展开更多
Observed rainfall is a very essential parameter for the analysis of rainfall,day to day weather forecast and its validation.The observed rainfall data is only available from five observatories of IMD;while no rainfall...Observed rainfall is a very essential parameter for the analysis of rainfall,day to day weather forecast and its validation.The observed rainfall data is only available from five observatories of IMD;while no rainfall data is available at various important locations in and around Delhi-NCR.However,the 24-hour rainfall data observed by Doppler Weather Radar(DWR)for entire Delhi and surrounding region(up to 150 km)is readily available in a pictorial form.In this paper,efforts have been made to derive/estimate the rainfall at desired locations using DWR hydrological products.Firstly,the rainfall at desired locations has been estimated from the precipitation accumulation product(PAC)of the DWR using image processing in Python language.After this,a linear regression model using the least square method has been developed in R language.Estimated and observed rainfall data of year 2018(July,August and September)was used to train the model.After this,the model was tested on rainfall data of year 2019(July,August and September)and validated.With the use of linear regression model,the error in mean rainfall estimation reduced by 46.58% and the error in max rainfall estimation reduced by 84.53% for the year 2019.The error in mean rainfall estimation reduced by 81.36% and the error in max rainfall estimation reduced by 33.81%for the year 2018.Thus,the rainfall can be estimated with a fair degree of accuracy at desired locations within the range of the Doppler Weather Radar using the radar rainfall products and the developed linear regression model.展开更多
We considered the following semiparametric regres-sion model yi = X iT β+ s ( t i ) + ei (i =1,2,,n). First,the general-ized ridge estimators of both parameters and non-parameters are given without a restrained desig...We considered the following semiparametric regres-sion model yi = X iT β+ s ( t i ) + ei (i =1,2,,n). First,the general-ized ridge estimators of both parameters and non-parameters are given without a restrained design matrix. Second,the generalized ridge estimator will be compared with the penalized least squares estimator under a mean squares error,and some conditions in which the former excels the latter are given. Finally,the validity and feasibility of the method is illustrated by a simulation example.展开更多
For the nonparametric regression model Y-ni = g(x(ni)) + epsilon(ni)i = 1, ..., n, with regularly spaced nonrandom design, the authors study the behavior of the nonlinear wavelet estimator of g(x). When the threshold ...For the nonparametric regression model Y-ni = g(x(ni)) + epsilon(ni)i = 1, ..., n, with regularly spaced nonrandom design, the authors study the behavior of the nonlinear wavelet estimator of g(x). When the threshold and truncation parameters are chosen by cross-validation on the everage squared error, strong consistency for the case of dyadic sample size and moment consistency for arbitrary sample size are established under some regular conditions.展开更多
As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this p...As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this paper.The forecasting output can be defined as energy saving control setting value of heating supply substation;meanwhile,it can also provide a practical basis for heating dispatching and peak load regulating operation.By means of the proposed approach,SVR model is used to point forecasting and the error interval can be gained by using nonparametric kernel estimation to the forecast error,which avoid the distributional assumptions.Combining the point forecasting results and error interval,the forecast confidence interval is obtained.Finally,the proposed model is performed through simulations by applying it to the data from a heating supply network in Harbin,and the results show that the method can meet the demands of energy saving control and heating dispatching.展开更多
While an auxiliary information in double sampling increases the precision of an estimate and solves the problem of bias caused by non-response in sample survey, the question is that, does the level of correlation betw...While an auxiliary information in double sampling increases the precision of an estimate and solves the problem of bias caused by non-response in sample survey, the question is that, does the level of correlation between the auxiliary information x and the study variable y ease in the accomplishment of the objectives of using double sampling? In this research, investigation was conducted through empirical study to ascertain the importance of correlation level between the auxiliary variable and the study variable to maximally accomplish the importance of auxiliary variable(s) in double sampling. Based on the Statistics criteria employed, which are minimum variance, coefficient of variation and relative efficiency, it was established that the higher the correlation level between the study and auxiliary variable(s) is, the better the estimator is.展开更多
Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classifi...Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classification problem,such as problem with non-equilibrium samples.Many scholars have proposed some methods,such as neural network,least square support vector machine,AdaBoost meta-algorithm,etc.These methods essentially belong to machine learning categories.In this work,based on the probability theory and statistical principle,we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification.We have compared our approach with other methods using non-equilibrium samples,the results show that our approach guarantees sample integrity and achieves superior classification.展开更多
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
In this paper, we proposed an iterative reweighted l1?penalty regression approach to solve the line spectral estimation problem. In each iteration process, we first use the ideal of Bayesian lasso to update the sparse...In this paper, we proposed an iterative reweighted l1?penalty regression approach to solve the line spectral estimation problem. In each iteration process, we first use the ideal of Bayesian lasso to update the sparse vectors;the derivative of the penalty function forms the regularization parameter. We choose the anti-trigonometric function as a penalty function to approximate the?l0? norm. Then we use the gradient descent method to update the dictionary parameters. The theoretical analysis and simulation results demonstrate the effectiveness of the method and show that the proposed algorithm outperforms other state-of-the-art methods for many practical cases.展开更多
Thermal remote sensing imagery is helpful for land cover classification and related analysis.Unfortunately,the spatial resolution of thermal infrared(TIR)band is generally coarser than that of visual near-infrared ban...Thermal remote sensing imagery is helpful for land cover classification and related analysis.Unfortunately,the spatial resolution of thermal infrared(TIR)band is generally coarser than that of visual near-infrared band,which limits its more precise applications.Various thermal sharpening(TSP)techniques have been developed for improving the spatial resolution of the imagery of TIR band or land surface temperature(LST).However,there is no research on the theoretical estimation of TSP error till now,which implies that the error in sharpened LST imagery is unknown and the further analysis might be not reliable.In this paper,an error estimation method based on classical linear regression theory for the linear-regression-based TSP techniques was firstly introduced.However,the scale difference between the coarse resolution and fine resolution is not considered in this method.Therefore,we further developed an improved error estimation method with the consideration of the scale difference,which employs a novel term named equivalent random sample size to reflect the scale difference.A simulation study of modified TsHARP(a typical TSP technique)shows that the improved method estimated the TSP error more accurately than classical regression theory.Especially,the phenomena that TSP error increases with the increasing resolution gap between the initial and target resolutions can be successfully predicted by the proposed method.展开更多
In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator ...In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator for the parameter of interest. We show that the proposed estimator has better predictive potential than the usual least squares estimator via simulation. An empirical application to finance is given. And a possible extension of the estimation procedure to cointegration models is also described.展开更多
文摘To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
基金Sponsored by the National Natural Science Foundation of China & Civil Aviation Administration of China(Grant No.61071104)the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(Grant No.ITD-U10006)
文摘A novel pilot-aided ridge regression (RR) channel estimation for SC-FDE system on time-varying frequency selective fading channel is derived. Previous least square (LS) channel estimation, which does not consider and utilize the influence of noise, has poor performance when the observed signal is corrupted abnormally by noise. In order to overcome the inherent disadvantage of LS estimation, the proposed RR estimation uses the influence of noise to get better performance. The performance of this new estimator is examined. The numerical results are presented to show that the new estimation improves the accuracy of estimation especially in low channel signal-to-noise ratio (CSNR) level and outperforms LS estimation. In addition, the proposed RR estimation can get the gains of about 1dB compared with LS estimation.
基金support from Shenzhen Municipal Development and Reform Commission(Grant Number:SDRC[2016]172)Shenzhen Science and Technology Program(Grant No.KQTD20170810150821146)Interdisciplinary Research and Innovation Fund of Tsinghua Shenzhen International Graduate School,and Shanghai Shun Feng Machinery Co.,Ltd.
文摘It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.
基金Supported by the Science Development Foundation of HFUT(041002F)
文摘In this paper, we study the strong consistency for partitioning estimation of regression function under samples that axe φ-mixing sequences with identically distribution.Key words: nonparametric regression function; partitioning estimation; strong convergence;φ-mixing sequences.
基金The National Key R&D Program,No.2018YFA0605603National Natural Science Foundation of China,No.41575003。
文摘The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how to accurately estimate the SATLR in the regions with complex terrain and climatic condition has been a great challenge for researchers.The geographically weighted regression(GWR)model was applied in this paper to estimate the SATLR in China’s mainland,and then the assessment and validation for the GWR model were made.The spatial pattern of regression residuals which was identified by Moran’s Index indicated that the GWR model was broadly reasonable for the estimation of SATLR.The small mean absolute error(MAE)in all months indicated that the GWR model had a strong predictive ability for the surface air temperature.The comparison with previous studies for the seasonal mean SATLR further evidenced the accuracy of the estimation.Therefore,the GWR method has potential application for estimating the SATLR in a large region with complex terrain and climatic condition.
文摘In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.
文摘Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.
基金co-supported by the National Natural Science Foundation of China (Grant Nos. 61371134, 61071137)the National Basic Research Program of China (No. 2010CB327900)
文摘The application of high-performance imaging sensors in space-based space surveillance systems makes it possible to recognize space objects and estimate their poses using vision-based methods. In this paper, we proposed a kernel regression-based method for joint multi-view space object recognition and pose estimation. We built a new simulated satellite image dataset named BUAA-SID 1.5 to test our method using different image representations. We evaluated our method for recognition-only tasks, pose estimation-only tasks, and joint recognition and pose estimation tasks. Experimental results show that our method outperforms the state-of-the-arts in space object recognition, and can recognize space objects and estimate their poses effectively and robustly against noise and lighting conditions.
文摘Observed rainfall is a very essential parameter for the analysis of rainfall,day to day weather forecast and its validation.The observed rainfall data is only available from five observatories of IMD;while no rainfall data is available at various important locations in and around Delhi-NCR.However,the 24-hour rainfall data observed by Doppler Weather Radar(DWR)for entire Delhi and surrounding region(up to 150 km)is readily available in a pictorial form.In this paper,efforts have been made to derive/estimate the rainfall at desired locations using DWR hydrological products.Firstly,the rainfall at desired locations has been estimated from the precipitation accumulation product(PAC)of the DWR using image processing in Python language.After this,a linear regression model using the least square method has been developed in R language.Estimated and observed rainfall data of year 2018(July,August and September)was used to train the model.After this,the model was tested on rainfall data of year 2019(July,August and September)and validated.With the use of linear regression model,the error in mean rainfall estimation reduced by 46.58% and the error in max rainfall estimation reduced by 84.53% for the year 2019.The error in mean rainfall estimation reduced by 81.36% and the error in max rainfall estimation reduced by 33.81%for the year 2018.Thus,the rainfall can be estimated with a fair degree of accuracy at desired locations within the range of the Doppler Weather Radar using the radar rainfall products and the developed linear regression model.
基金Supported by the Key Project of Chinese Ministry of Educa-tion (209078)the Scientific Research Item of Hubei Provincial Department of Education (D20092207)
文摘We considered the following semiparametric regres-sion model yi = X iT β+ s ( t i ) + ei (i =1,2,,n). First,the general-ized ridge estimators of both parameters and non-parameters are given without a restrained design matrix. Second,the generalized ridge estimator will be compared with the penalized least squares estimator under a mean squares error,and some conditions in which the former excels the latter are given. Finally,the validity and feasibility of the method is illustrated by a simulation example.
文摘For the nonparametric regression model Y-ni = g(x(ni)) + epsilon(ni)i = 1, ..., n, with regularly spaced nonrandom design, the authors study the behavior of the nonlinear wavelet estimator of g(x). When the threshold and truncation parameters are chosen by cross-validation on the everage squared error, strong consistency for the case of dyadic sample size and moment consistency for arbitrary sample size are established under some regular conditions.
基金Sponsored by the National 11th 5-year Plan Key Project of Ministry of Science and Technology of China (Grant No.2006BAJ01A04)
文摘As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this paper.The forecasting output can be defined as energy saving control setting value of heating supply substation;meanwhile,it can also provide a practical basis for heating dispatching and peak load regulating operation.By means of the proposed approach,SVR model is used to point forecasting and the error interval can be gained by using nonparametric kernel estimation to the forecast error,which avoid the distributional assumptions.Combining the point forecasting results and error interval,the forecast confidence interval is obtained.Finally,the proposed model is performed through simulations by applying it to the data from a heating supply network in Harbin,and the results show that the method can meet the demands of energy saving control and heating dispatching.
文摘While an auxiliary information in double sampling increases the precision of an estimate and solves the problem of bias caused by non-response in sample survey, the question is that, does the level of correlation between the auxiliary information x and the study variable y ease in the accomplishment of the objectives of using double sampling? In this research, investigation was conducted through empirical study to ascertain the importance of correlation level between the auxiliary variable and the study variable to maximally accomplish the importance of auxiliary variable(s) in double sampling. Based on the Statistics criteria employed, which are minimum variance, coefficient of variation and relative efficiency, it was established that the higher the correlation level between the study and auxiliary variable(s) is, the better the estimator is.
基金The authors would like to thank all anonymous reviewers for their suggestions and feedback.This work was supported by National Natural Science Foundation of China(Grant No.61379103).
文摘Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classification problem,such as problem with non-equilibrium samples.Many scholars have proposed some methods,such as neural network,least square support vector machine,AdaBoost meta-algorithm,etc.These methods essentially belong to machine learning categories.In this work,based on the probability theory and statistical principle,we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification.We have compared our approach with other methods using non-equilibrium samples,the results show that our approach guarantees sample integrity and achieves superior classification.
基金Supported by the NSF of Henan Province(0611052600)
文摘Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
文摘In this paper, we proposed an iterative reweighted l1?penalty regression approach to solve the line spectral estimation problem. In each iteration process, we first use the ideal of Bayesian lasso to update the sparse vectors;the derivative of the penalty function forms the regularization parameter. We choose the anti-trigonometric function as a penalty function to approximate the?l0? norm. Then we use the gradient descent method to update the dictionary parameters. The theoretical analysis and simulation results demonstrate the effectiveness of the method and show that the proposed algorithm outperforms other state-of-the-art methods for many practical cases.
基金financially supported by the State Key Laboratory of Earth Surface Processes and Resource Ecology under Grant 2013-RC-02.
文摘Thermal remote sensing imagery is helpful for land cover classification and related analysis.Unfortunately,the spatial resolution of thermal infrared(TIR)band is generally coarser than that of visual near-infrared band,which limits its more precise applications.Various thermal sharpening(TSP)techniques have been developed for improving the spatial resolution of the imagery of TIR band or land surface temperature(LST).However,there is no research on the theoretical estimation of TSP error till now,which implies that the error in sharpened LST imagery is unknown and the further analysis might be not reliable.In this paper,an error estimation method based on classical linear regression theory for the linear-regression-based TSP techniques was firstly introduced.However,the scale difference between the coarse resolution and fine resolution is not considered in this method.Therefore,we further developed an improved error estimation method with the consideration of the scale difference,which employs a novel term named equivalent random sample size to reflect the scale difference.A simulation study of modified TsHARP(a typical TSP technique)shows that the improved method estimated the TSP error more accurately than classical regression theory.Especially,the phenomena that TSP error increases with the increasing resolution gap between the initial and target resolutions can be successfully predicted by the proposed method.
基金The NNSF(10571073)of china,and 985 project of Jilin University.
文摘In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator for the parameter of interest. We show that the proposed estimator has better predictive potential than the usual least squares estimator via simulation. An empirical application to finance is given. And a possible extension of the estimation procedure to cointegration models is also described.