Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding...Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.展开更多
Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental...Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.展开更多
The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be ran...The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be random and the Markov model is applied to the study of the evolution of genes. Then a non linear optimization approach is proposed for estimating substitution in real sequences. This substitution is called the 'Nucleotide State Transfer Matrix'. One of the most important conclusions from this work is that gene sequence evolution conforms to the Markov process. Also, some theoretical evidences for random evolution are given from energy analysis of DNA replication.展开更多
Fish of the superfamily Cobitoidea sensu stricto (namely Ioaches) exhibit extremely high diversity of color patterns, but so far little is known about their evolutionary mechanism. Melanocortin 1 receptor gene (MCI...Fish of the superfamily Cobitoidea sensu stricto (namely Ioaches) exhibit extremely high diversity of color patterns, but so far little is known about their evolutionary mechanism. Melanocortin 1 receptor gene (MCIR) plays an important role during the synthesis of melanin and formation of animal body color patterns. In this study, we amplified and sequenced the partial MCIR gene for 44 loach individuals representing 31 species of four families. Phylogenetic analyses yielded a topology congruent with previous studies using multiple nuclear loci, showing that each of the four families was monophyletic with sister relationships of Botiidae+ (Cobitidae+(Balitoridae+Nemacheilidae)). Gene evolutionary analyses indicated that MCIR in Ioaches was under purifying selection pressure, with various sites having different dNIds values. Both Botiidae and Cobitidae had lower dN/ds values than those of background lineages, suggesting their evolution might be strongly affected by purifying selection pressure. For Balitoddae and Nemacheilidae, both had larger dNIds values than those of background lineages, suggesting they had a faster evolutionary rate under more relaxed selection pressure. Consequently, we inferred that the relatively stable color patterns in Botiidae and Cobitidae might result from the strong purifying selection pressure on the MC1R gene, whereas the complicated and diverse color patterns in Balitoridae and Nemacheilidae might be associated with the relaxed selection pressure. Given the easy experimental procedure for the partial MCTR gene and its excellent performance in reconstructing phylogeny, we suggest this gene could be used as a good molecular marker for the phylogenetic study of fish species.展开更多
In order to reveal variation and revolution of NP genes of human avian H5 N1 influenza virus strains, the NP gene of a human avian H5 N1 influenza virus strain in Guangdong was sequenced and the global NP genes of str...In order to reveal variation and revolution of NP genes of human avian H5 N1 influenza virus strains, the NP gene of a human avian H5 N1 influenza virus strain in Guangdong was sequenced and the global NP genes of strains were retrieved. The sequences were analyzed by DNAStar 5.0, and the evolutionary speed was studied with reference to the epidemiological data. It was found that NP genes of 45 strains during 1997-2006 were homologically classified into three groups: strains in 1997-1998, strains in 2004-2005 and strains from 2003 to 2006. There were 35 substitutions in NPs in all strains accounting for a ratio of 7.03% (35/498). An additional glycoprotein domain (NGT430-432) was found in NP genes in the strains of 2003-2006, the mutation of N370S in GD-01-06 resulted in occurrence of one more glycoprotein domain (NES368-370). In the synonymous variation, Ks values in NP were 2.03 × 10^-5-2.55 × 10^-5 Nt/d and K. values in NP were 1.58 × 10^-6-3.10 × 10^-6 Nt/d. There didn't exist obviously selective pressure. An additional glycoprotein domain in every strain of 2003-2006 and one more in strain GD-01-06 might change the antigenicity of human avian H5 N1 influenza virus. The variation on human avian H5 N1 influenza strains occurred frequently in the natural world, which would result in high probability of human-human transmission along with the natural evolution of the virus.展开更多
Many genes associated with reproduction show rapid evolution across diverse animal groups, a result commonly due to adaptive evolution driven by positive selection (Swanson and Vacquier, 2002). Different theories ha...Many genes associated with reproduction show rapid evolution across diverse animal groups, a result commonly due to adaptive evolution driven by positive selection (Swanson and Vacquier, 2002). Different theories have been proposed to explain the elevated rates of evolution (Swanson and Vacquier, 2002), including sperm competition, where sperm compete to fertilize eggs leading to the proteins in the sper- matozoa adaptively evolving to increase their ability to fertilize eggs; sexual conflict, where the egg experiences a loss of fitness when sperm are too abundant; sexual selection, where eggs bind sperm carrying adaptive alleles (Palumbi, 1999); and cryptic female choice (reviewed in Swanson and Vacquier, 2002).展开更多
Litsea,a non-monophyletic group of the tribe Laureae(Lauraceae),plays important roles in the tropical and subtropical forests of Asia,Australia,Central and North America,and the islands of the Pacific.However,intergen...Litsea,a non-monophyletic group of the tribe Laureae(Lauraceae),plays important roles in the tropical and subtropical forests of Asia,Australia,Central and North America,and the islands of the Pacific.However,intergeneric relationships between Litsea and Laurus,Lindera,Parasassafras and Sinosassafras of the tribe Laureae remain unresolved.In this study,we present phylogenetic analyses of seven newly sequenced Litsea plastomes,together with 47 Laureae plastomes obtained from public databases,representing six genera of the Laureae.Our results highlight two highly supported monophyletic groups of Litsea taxa.One is composed of 16 Litsea taxa and two Lindera taxa.The 18 plastomes of these taxa were further compared for their gene structure,codon usage,contraction and expansion of inverted repeats,sequence repeats,divergence hotspots,and gene evolution.The complete plastome size of newly sequenced taxa varied between 152,377 bp(Litsea auriculata)and 154,117 bp(Litsea pierrei).Seven of the 16 Litsea plastomes have a pair of insertions in the IRa(trnL-trnH)and IRb(ycf2)regions.The 18 plastomes of Litsea and Lindera taxa exhibit similar gene features,codon usage,oligonucleotide repeats,and inverted repeat dynamics.The codons with the highest frequency among these taxa favored A/T endings and each of these plastomes had nine divergence hotspots,which are located in the same regions.We also identified six protein coding genes(accD,ndhJ,rbcL,rpoC2,ycf1 and ycf2)under positive selection in Litsea;these genes may play important roles in adaptation of Litsea species to various environments.展开更多
Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricult...Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricultural application.Following the rapid development of genome editing technology,generation of novel glufosinate-tolerant gene resources through artificial evolution of endogenous genes is more promising and highly desirable in rice molecular breeding program.In this study,the endogenous Glutamine synthetase1(OsGS1)was artificially evolved by base-editing-mediated gene evolution(BEMGE)in rice cells to create novel alleles conferring glufosinate tolerance in rice germplasms.Two novel glufosinate-tolerant OsGS1 alleles(OsGS1-AVPS and OsGS1-+AF)and one reported tolerant allele(OsGS1-SGTA)were successfully identified from approximately 4200 independent hygromycin-tolerant calli.Germination assays and spray tests revealed that these three OsGS1 alleles confer glufosinate tolerance in rice.Furthermore,OsGS1-AVPS and OsGS1-SGTA were quickly deployed into the elite rice cultivar Nangeng 46 through precise base editing.Overall,our results demonstrate the feasibility of developing glufosinate-tolerant rice by editing an endogenous rice gene in molecular breeding programs.展开更多
Dear Editor,American sloughgrass(Beckmannia syzigachne[Steud.]Fernald)(2n=14)(Amosova et al.,2019),a diploid species within the Poaceae family,exhibits both annual and perennial life cycles and is self-pollinating.It ...Dear Editor,American sloughgrass(Beckmannia syzigachne[Steud.]Fernald)(2n=14)(Amosova et al.,2019),a diploid species within the Poaceae family,exhibits both annual and perennial life cycles and is self-pollinating.It is widely distributed throughout Eastern Asia,Western Europe,and North America(https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30332-2),playing a crucial role in both natural ecosystems and agricultural settings.B.syzigachne is important for wetland restoration and erosion control but also poses significant challenges as a weed in agricultural systems,particularly in rice–wheat and rice–rapeseed double-cropping systems(Qu et al.,2021).Understanding the genetic elements underpinning B.syzigachne’s adaptation to diverse environments is crucial for studying traits like herbicide resistance and stress tolerance,which are key to enhancing agricultural efficiency and promoting sustainable cropping practices.However,the lack of a reference genome has impeded progress in this area.More broadly,the International Weed Genomics Consortium is advancing genomic tools to advance sustainable weed control and provide insights into stress tolerance,potentially benefiting crop breeding(Montgomery et al.,2024).展开更多
Amborella trichopoda(Amborellaceae;hereafter simply Amborella)(Fig.1A)is a shrub endemic to New Caledonia in the Southwest Pacific that represents the sole sister species of all other extant angiosperms(Qiu et al.,199...Amborella trichopoda(Amborellaceae;hereafter simply Amborella)(Fig.1A)is a shrub endemic to New Caledonia in the Southwest Pacific that represents the sole sister species of all other extant angiosperms(Qiu et al.,1999;One Thousand Plant Transcriptomes Initiative,2019).Due to its unique phylogenetic status,it holds tremendous interest for botanists.The nuclear and mitochondrial genomes of Amborella were first published in 2013,providing valuable resources for studies on genome and gene family evolution,phylogenomics,and flower development,despite the fact that the assembly is heavily fragmented(Amborella Genome Project,2013;Rice et al.,2013).In 2024,a haplotype-resolved Amborella genome assembly was published,showing significant improvement in quality and completeness(Carey et al.,2024).展开更多
RXLR effectors are pathogenic factors secreted from oomycetes to manipulate the immunity of the host.Typical RXLR effectors contain an RXLR-dEER motif at the N-terminus,whereas atypical RXLRs show variations on this m...RXLR effectors are pathogenic factors secreted from oomycetes to manipulate the immunity of the host.Typical RXLR effectors contain an RXLR-dEER motif at the N-terminus,whereas atypical RXLRs show variations on this motif.The oomycete Phytophthora cactorum is known to infect over 200 plant species,resulting in significant agricultural economic losses.Although genome-wide identification and functional analyses of typical RXLRs from P.cactorum have been performed,little is known of atypical PcaRXLRs.Here,we identified RXLRs,both typical and atypical,in P.cactorum and compared them with those of other oomycete pathogens.Fewer RXLRs were identified in P.cactorum compared with other Phytophthora species,possibly due to fewer duplication events of RXLRs.In contrast,the percentage of atypical RXLRs was higher in P.cactorum than in other species,suggesting significant roles in P.cactorum pathogenesis.Analysis of RXLR gene expression showed that most were transcribed,suggesting their functionality.Transient expression of two atypical RXLRs in Nicotiana benthamiana showed that they induced necrosis dependent on host SGT1 and HSP90.Furthermore,two additional atypical RXLRs suppressed the defense response in N.benthamiana and promoted P.cactorum infection.These results demonstrate the vital role of atypical RXLRs in P.cactorum and provide valuable information on their evolutionary patterns and interactions with host plants.展开更多
Our goal is to decipher which DNA sequences are required for tissue-specific expression of epididymal genes. At least 6 epididymis-specific lipocalin genes are known. These are differently regulated and regionalized i...Our goal is to decipher which DNA sequences are required for tissue-specific expression of epididymal genes. At least 6 epididymis-specific lipocalin genes are known. These are differently regulated and regionalized in the epididymis. Lipocalin 5 (Lcn5 or mE-RABP) and Lipocalin 8 (Lcn8 or mEP17) are homologous genes belonging to the epididymis-specific lipocalin gene cluster. Both the 5 kb promoter fragment of the Lcn5 gene and the 5.3 kb promoter fragment of the Lcn8 gene can direct transgene expression in the epididymis (Lcn5 to the distal caput and Lcn8 to the initial segment), indicating that these promoter fragments contain important cis-regulatory element(s) for epididymisspecific gene expression. To define further the fragments regulating gene expression, the Lcn5 promoter was examined in transgenic mice and immortalized epididymal cell lines. After serial deletion, the 1.8 kb promoter fragment of the Lcn5 gene was sufficient for tissue-specific and region-specific gene expression in transgenic mice. Transient transfection analysis revealed that a transcription factor forkhead box A2 (Foxa2) interacts with androgen receptor and binds to the 100 bp fragment of the Lcn5 promoter between 1.2 kb and 1.3 kb and that Foxa2 expression inhibits androgen-dependent induction of the Lcn5 promoter activity. Immunohistochemistry indicated a restricted expression of Foxa2 in the epididymis where endogenous Lcn5 gene expression is suppressed and that the Foxa2 inhibition of the Lcn5 promoter is consistent with the lack of expression of Lcn5 in the corpus and cauda. Our approach provides a basic strategy for further analysis of the epididymal lipocalin gene regulation and flexible control of epididymal function. (Asian J Androl 2007 July; 9: 515-521)展开更多
In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for ...In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for the superfamilies F-box and NB-ARC, and five additional families: the Aspartic proteases, BTB/POZ proteins (BTB), Glutaredoxins, Trypsin a-amylase inhibitor proteins, and Zf-Dof proteins. Their evolutionary dynamic was investigated to understand how and why such important size variations are observed between these closely related species. We show that expansions resulted from both amplification, largely by tandem duplications, and contraction by gene losses. For the F-box and NB-ARC gene families, the genes conserved in all species were under strong purifying selection while expanded orthologous genes were under more relaxed purifying selection. In F-box, NB-ARC, and BTB, the expanded groups were enriched in genes with little evidence of expression, in comparison with conserved groups. We also detected 87 loci under positive selection in the expanded groups. These results show that most of the duplicated copies in the expanded groups evolve neutrally after duplication because of functional redundancy but a fraction of these genes were preserved following neofunctionalization. Hence, the lineage-specific expansions observed between Oryza species were partly driven by directional selection.展开更多
Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Br...Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Brassica(Br),and Leavenworthia alabamica(La)S-loci.Here,through multi-genomic comparative analysis of 20 species,we revealed that the most ancient S-locus was formed prior to the divergence of Brassicaceae lineage I and II.Itwas retained and inherited by Arabidopsis,as the Al S-locus in Brassicaceae lineage I.Furthermore,we found that the Br S-locus,which has been widely used in the breeding of Brassica crops to generate hybrid seeds,was formed through segmental translocation(ST)in the hexaploid ancestor of Brassica in Brassicaceae lineage II.The Br S-locus was evolved through a ST from one of the triplicated ancestral S-locus paralogs in the Brassica hexaploidy ancestor,while the other two S-locus paralogs were lost.Together with the previous discovery that the La S-locus was formed through a secondary origin in Brassicaceae lineage I,we conclude the monophyletic origin of Al and Br S-loci and clarify the evolutionary route of S-loci in the Brassicaceae family.Our findings will contribute to evolutionary studies and breeding applications of the S-locus in Brassicaceae.展开更多
The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2), providing a rapid entrance into...The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2), providing a rapid entrance into investigating the mechanisms of development of almost any animal taxon as well as dramatically altering conceptions on the extent of genetic conservation across the animal kingdom.展开更多
基金This work was supported by grants from the Natural Science Foundation of China (No. 30470990, No. 30571063)the"948"Project from the Minister of Agriculture in China, the"973"Project from the Minister of Science and Technology (No.2006CB101904)+1 种基金Hunan Natural Science Foundation (No.06JJ10006)Scientific Research Fund of Hunan Provincial Education department (No.04A024).
文摘Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.
基金supported by the National Key R&D Program of China(Grant No.2018YFD1000400)National Natural Science Foundation of China(Grant Nos.31860571 and 31560565)+1 种基金Major Science and Technology Projects Yunnan Province(Grant No.2016ZA005)Yunnan Youth Academic&Technical Leaders Reserve Talents Training Project(Grant No.2015HB078)。
文摘Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.
文摘The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be random and the Markov model is applied to the study of the evolution of genes. Then a non linear optimization approach is proposed for estimating substitution in real sequences. This substitution is called the 'Nucleotide State Transfer Matrix'. One of the most important conclusions from this work is that gene sequence evolution conforms to the Markov process. Also, some theoretical evidences for random evolution are given from energy analysis of DNA replication.
基金supported by the National Natural Science Foundation of China(NSFC 31272306,31400359,31401968)
文摘Fish of the superfamily Cobitoidea sensu stricto (namely Ioaches) exhibit extremely high diversity of color patterns, but so far little is known about their evolutionary mechanism. Melanocortin 1 receptor gene (MCIR) plays an important role during the synthesis of melanin and formation of animal body color patterns. In this study, we amplified and sequenced the partial MCIR gene for 44 loach individuals representing 31 species of four families. Phylogenetic analyses yielded a topology congruent with previous studies using multiple nuclear loci, showing that each of the four families was monophyletic with sister relationships of Botiidae+ (Cobitidae+(Balitoridae+Nemacheilidae)). Gene evolutionary analyses indicated that MCIR in Ioaches was under purifying selection pressure, with various sites having different dNIds values. Both Botiidae and Cobitidae had lower dN/ds values than those of background lineages, suggesting their evolution might be strongly affected by purifying selection pressure. For Balitoddae and Nemacheilidae, both had larger dNIds values than those of background lineages, suggesting they had a faster evolutionary rate under more relaxed selection pressure. Consequently, we inferred that the relatively stable color patterns in Botiidae and Cobitidae might result from the strong purifying selection pressure on the MC1R gene, whereas the complicated and diverse color patterns in Balitoridae and Nemacheilidae might be associated with the relaxed selection pressure. Given the easy experimental procedure for the partial MCTR gene and its excellent performance in reconstructing phylogeny, we suggest this gene could be used as a good molecular marker for the phylogenetic study of fish species.
文摘In order to reveal variation and revolution of NP genes of human avian H5 N1 influenza virus strains, the NP gene of a human avian H5 N1 influenza virus strain in Guangdong was sequenced and the global NP genes of strains were retrieved. The sequences were analyzed by DNAStar 5.0, and the evolutionary speed was studied with reference to the epidemiological data. It was found that NP genes of 45 strains during 1997-2006 were homologically classified into three groups: strains in 1997-1998, strains in 2004-2005 and strains from 2003 to 2006. There were 35 substitutions in NPs in all strains accounting for a ratio of 7.03% (35/498). An additional glycoprotein domain (NGT430-432) was found in NP genes in the strains of 2003-2006, the mutation of N370S in GD-01-06 resulted in occurrence of one more glycoprotein domain (NES368-370). In the synonymous variation, Ks values in NP were 2.03 × 10^-5-2.55 × 10^-5 Nt/d and K. values in NP were 1.58 × 10^-6-3.10 × 10^-6 Nt/d. There didn't exist obviously selective pressure. An additional glycoprotein domain in every strain of 2003-2006 and one more in strain GD-01-06 might change the antigenicity of human avian H5 N1 influenza virus. The variation on human avian H5 N1 influenza strains occurred frequently in the natural world, which would result in high probability of human-human transmission along with the natural evolution of the virus.
基金supported by the grant from the National Natural Science Foundation of China(No.31061160189)
文摘Many genes associated with reproduction show rapid evolution across diverse animal groups, a result commonly due to adaptive evolution driven by positive selection (Swanson and Vacquier, 2002). Different theories have been proposed to explain the elevated rates of evolution (Swanson and Vacquier, 2002), including sperm competition, where sperm compete to fertilize eggs leading to the proteins in the sper- matozoa adaptively evolving to increase their ability to fertilize eggs; sexual conflict, where the egg experiences a loss of fitness when sperm are too abundant; sexual selection, where eggs bind sperm carrying adaptive alleles (Palumbi, 1999); and cryptic female choice (reviewed in Swanson and Vacquier, 2002).
基金supported by the National Natural Science Foundation of China(Grant No.32060710,31970223,31860005,31860620)Applied Basic Research Projects of Yunnan(Grant No.2019FB057).
文摘Litsea,a non-monophyletic group of the tribe Laureae(Lauraceae),plays important roles in the tropical and subtropical forests of Asia,Australia,Central and North America,and the islands of the Pacific.However,intergeneric relationships between Litsea and Laurus,Lindera,Parasassafras and Sinosassafras of the tribe Laureae remain unresolved.In this study,we present phylogenetic analyses of seven newly sequenced Litsea plastomes,together with 47 Laureae plastomes obtained from public databases,representing six genera of the Laureae.Our results highlight two highly supported monophyletic groups of Litsea taxa.One is composed of 16 Litsea taxa and two Lindera taxa.The 18 plastomes of these taxa were further compared for their gene structure,codon usage,contraction and expansion of inverted repeats,sequence repeats,divergence hotspots,and gene evolution.The complete plastome size of newly sequenced taxa varied between 152,377 bp(Litsea auriculata)and 154,117 bp(Litsea pierrei).Seven of the 16 Litsea plastomes have a pair of insertions in the IRa(trnL-trnH)and IRb(ycf2)regions.The 18 plastomes of Litsea and Lindera taxa exhibit similar gene features,codon usage,oligonucleotide repeats,and inverted repeat dynamics.The codons with the highest frequency among these taxa favored A/T endings and each of these plastomes had nine divergence hotspots,which are located in the same regions.We also identified six protein coding genes(accD,ndhJ,rbcL,rpoC2,ycf1 and ycf2)under positive selection in Litsea;these genes may play important roles in adaptation of Litsea species to various environments.
基金supported by grants from the Shenzhen Science and Technology Program(KQTD20180411143628272)Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District(PT202101-02)+3 种基金the Hainan Yazhou Bay Seed Lab(B21HJ0215),the National Natural Science Foundation of China(32102294)the China National Postdoctoral Program for Innovative Talents(BX2020378)the China Postdoctoral Science Foundation(2020M672902)the Central Publicinterest Scientific Institution Basal Research Fund(Y2022PT24).
文摘Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricultural application.Following the rapid development of genome editing technology,generation of novel glufosinate-tolerant gene resources through artificial evolution of endogenous genes is more promising and highly desirable in rice molecular breeding program.In this study,the endogenous Glutamine synthetase1(OsGS1)was artificially evolved by base-editing-mediated gene evolution(BEMGE)in rice cells to create novel alleles conferring glufosinate tolerance in rice germplasms.Two novel glufosinate-tolerant OsGS1 alleles(OsGS1-AVPS and OsGS1-+AF)and one reported tolerant allele(OsGS1-SGTA)were successfully identified from approximately 4200 independent hygromycin-tolerant calli.Germination assays and spray tests revealed that these three OsGS1 alleles confer glufosinate tolerance in rice.Furthermore,OsGS1-AVPS and OsGS1-SGTA were quickly deployed into the elite rice cultivar Nangeng 46 through precise base editing.Overall,our results demonstrate the feasibility of developing glufosinate-tolerant rice by editing an endogenous rice gene in molecular breeding programs.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under grant no.LR24C130001the Department of Science and Technology of Zhejiang Province(2022C02032).
文摘Dear Editor,American sloughgrass(Beckmannia syzigachne[Steud.]Fernald)(2n=14)(Amosova et al.,2019),a diploid species within the Poaceae family,exhibits both annual and perennial life cycles and is self-pollinating.It is widely distributed throughout Eastern Asia,Western Europe,and North America(https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30332-2),playing a crucial role in both natural ecosystems and agricultural settings.B.syzigachne is important for wetland restoration and erosion control but also poses significant challenges as a weed in agricultural systems,particularly in rice–wheat and rice–rapeseed double-cropping systems(Qu et al.,2021).Understanding the genetic elements underpinning B.syzigachne’s adaptation to diverse environments is crucial for studying traits like herbicide resistance and stress tolerance,which are key to enhancing agricultural efficiency and promoting sustainable cropping practices.However,the lack of a reference genome has impeded progress in this area.More broadly,the International Weed Genomics Consortium is advancing genomic tools to advance sustainable weed control and provide insights into stress tolerance,potentially benefiting crop breeding(Montgomery et al.,2024).
基金supported by the National Natural Science Foundation of China(32270217,31970205,31770211)Metasequoia funding of Nanjing Forestry University to YY。
文摘Amborella trichopoda(Amborellaceae;hereafter simply Amborella)(Fig.1A)is a shrub endemic to New Caledonia in the Southwest Pacific that represents the sole sister species of all other extant angiosperms(Qiu et al.,1999;One Thousand Plant Transcriptomes Initiative,2019).Due to its unique phylogenetic status,it holds tremendous interest for botanists.The nuclear and mitochondrial genomes of Amborella were first published in 2013,providing valuable resources for studies on genome and gene family evolution,phylogenomics,and flower development,despite the fact that the assembly is heavily fragmented(Amborella Genome Project,2013;Rice et al.,2013).In 2024,a haplotype-resolved Amborella genome assembly was published,showing significant improvement in quality and completeness(Carey et al.,2024).
基金funded by the Liaoning Applied Basic Research Program(2022JH2/101300284)Liaoning Agricultural Science and Technology Innovation Fund(2022XTCX0503 and 2023QN2417).
文摘RXLR effectors are pathogenic factors secreted from oomycetes to manipulate the immunity of the host.Typical RXLR effectors contain an RXLR-dEER motif at the N-terminus,whereas atypical RXLRs show variations on this motif.The oomycete Phytophthora cactorum is known to infect over 200 plant species,resulting in significant agricultural economic losses.Although genome-wide identification and functional analyses of typical RXLRs from P.cactorum have been performed,little is known of atypical PcaRXLRs.Here,we identified RXLRs,both typical and atypical,in P.cactorum and compared them with those of other oomycete pathogens.Fewer RXLRs were identified in P.cactorum compared with other Phytophthora species,possibly due to fewer duplication events of RXLRs.In contrast,the percentage of atypical RXLRs was higher in P.cactorum than in other species,suggesting significant roles in P.cactorum pathogenesis.Analysis of RXLR gene expression showed that most were transcribed,suggesting their functionality.Transient expression of two atypical RXLRs in Nicotiana benthamiana showed that they induced necrosis dependent on host SGT1 and HSP90.Furthermore,two additional atypical RXLRs suppressed the defense response in N.benthamiana and promoted P.cactorum infection.These results demonstrate the vital role of atypical RXLRs in P.cactorum and provide valuable information on their evolutionary patterns and interactions with host plants.
文摘Our goal is to decipher which DNA sequences are required for tissue-specific expression of epididymal genes. At least 6 epididymis-specific lipocalin genes are known. These are differently regulated and regionalized in the epididymis. Lipocalin 5 (Lcn5 or mE-RABP) and Lipocalin 8 (Lcn8 or mEP17) are homologous genes belonging to the epididymis-specific lipocalin gene cluster. Both the 5 kb promoter fragment of the Lcn5 gene and the 5.3 kb promoter fragment of the Lcn8 gene can direct transgene expression in the epididymis (Lcn5 to the distal caput and Lcn8 to the initial segment), indicating that these promoter fragments contain important cis-regulatory element(s) for epididymisspecific gene expression. To define further the fragments regulating gene expression, the Lcn5 promoter was examined in transgenic mice and immortalized epididymal cell lines. After serial deletion, the 1.8 kb promoter fragment of the Lcn5 gene was sufficient for tissue-specific and region-specific gene expression in transgenic mice. Transient transfection analysis revealed that a transcription factor forkhead box A2 (Foxa2) interacts with androgen receptor and binds to the 100 bp fragment of the Lcn5 promoter between 1.2 kb and 1.3 kb and that Foxa2 expression inhibits androgen-dependent induction of the Lcn5 promoter activity. Immunohistochemistry indicated a restricted expression of Foxa2 in the epididymis where endogenous Lcn5 gene expression is suppressed and that the Foxa2 inhibition of the Lcn5 promoter is consistent with the lack of expression of Lcn5 in the corpus and cauda. Our approach provides a basic strategy for further analysis of the epididymal lipocalin gene regulation and flexible control of epididymal function. (Asian J Androl 2007 July; 9: 515-521)
文摘In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for the superfamilies F-box and NB-ARC, and five additional families: the Aspartic proteases, BTB/POZ proteins (BTB), Glutaredoxins, Trypsin a-amylase inhibitor proteins, and Zf-Dof proteins. Their evolutionary dynamic was investigated to understand how and why such important size variations are observed between these closely related species. We show that expansions resulted from both amplification, largely by tandem duplications, and contraction by gene losses. For the F-box and NB-ARC gene families, the genes conserved in all species were under strong purifying selection while expanded orthologous genes were under more relaxed purifying selection. In F-box, NB-ARC, and BTB, the expanded groups were enriched in genes with little evidence of expression, in comparison with conserved groups. We also detected 87 loci under positive selection in the expanded groups. These results show that most of the duplicated copies in the expanded groups evolve neutrally after duplication because of functional redundancy but a fraction of these genes were preserved following neofunctionalization. Hence, the lineage-specific expansions observed between Oryza species were partly driven by directional selection.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFD0100307 and 2018YFD1000800)the National Natural Science Foundation of China (Grant No. 31722048 and 31630068)+1 种基金the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciencesthe Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, China
文摘Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Brassica(Br),and Leavenworthia alabamica(La)S-loci.Here,through multi-genomic comparative analysis of 20 species,we revealed that the most ancient S-locus was formed prior to the divergence of Brassicaceae lineage I and II.Itwas retained and inherited by Arabidopsis,as the Al S-locus in Brassicaceae lineage I.Furthermore,we found that the Br S-locus,which has been widely used in the breeding of Brassica crops to generate hybrid seeds,was formed through segmental translocation(ST)in the hexaploid ancestor of Brassica in Brassicaceae lineage II.The Br S-locus was evolved through a ST from one of the triplicated ancestral S-locus paralogs in the Brassica hexaploidy ancestor,while the other two S-locus paralogs were lost.Together with the previous discovery that the La S-locus was formed through a secondary origin in Brassicaceae lineage I,we conclude the monophyletic origin of Al and Br S-loci and clarify the evolutionary route of S-loci in the Brassicaceae family.Our findings will contribute to evolutionary studies and breeding applications of the S-locus in Brassicaceae.
文摘The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2), providing a rapid entrance into investigating the mechanisms of development of almost any animal taxon as well as dramatically altering conceptions on the extent of genetic conservation across the animal kingdom.