期刊文献+
共找到983篇文章
< 1 2 50 >
每页显示 20 50 100
An Efficient Method for Reliability-based Multidisciplinary Design Optimization 被引量:12
1
作者 范辉 李为吉 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期335-340,共6页
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ... Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process. 展开更多
关键词 multidisciplinary design optimization (MDO) concurrent subspace optimization reliability analysis advanced first order second moment method
在线阅读 下载PDF
Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design 被引量:10
2
作者 Z.L.Huang Y.S.Zhou +2 位作者 C.Jiang J.Zheng X.Han 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期285-302,共18页
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici... Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method. 展开更多
关键词 reliability-based design optimization(RBDO) Multidisciplinary design optimization(MDO) Incremental shifting vector(ISV) Decoupling algorithm Electronic product
在线阅读 下载PDF
An Uncertainty Analysis and Reliability-Based Multidisciplinary Design Optimization Method Using Fourth-Moment Saddlepoint Approximation
3
作者 Yongqiang Guo Zhiyuan Lv 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1855-1870,共16页
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of... In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method. 展开更多
关键词 reliability-based multidisciplinary design optimization moment method saddlepoint approximate sequence optimization and reliability assessment performance measure approach
在线阅读 下载PDF
Reliability-based Robust Optimization Design of Automobile Components with Non-normal Distribution Parameters 被引量:14
4
作者 YANG Zhou ZHANG Yimin +2 位作者 HUANG Xianzhen ZHANG Xufang TANG Le 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期823-830,共8页
In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong... In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components. 展开更多
关键词 fourth-moment technique reliability robust design reliability optimization non-normal distribution parameters
在线阅读 下载PDF
Reliability design optimization of composite structures based on PSO together with FEA 被引量:9
5
作者 Chen Jianqiao Tang Yuanfu +2 位作者 Ge Rui An Qunli Guo Xiwei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期343-349,共7页
The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. ... The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. Numerical examples for the reliability design optimization (RDO) of a laminate and a composite cylindrical shell are worked out to demonstrate the effectiveness of the method. Then a design for composite pressure vessels is studied. The advantages and necessity of RDO over the conventional equi-strength design are addressed. Examples show that the proposed method has good stability and is efficient in dealing with the probabilistic optimal design of composite structures. It may serve as an effective tool to optimize other complicated structures with uncertainties. 展开更多
关键词 Composite structures FEA PSO reliability analysis reliability design optimization
原文传递
RELIABILITY-BASED DESIGN OF COMPOSITES UNDER THE MIXED UNCERTAINTIES AND THE OPTIMIZATION ALGORITHM 被引量:6
6
作者 Rui Ge Jianqiao Chen Junhong Wei 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第1期19-27,共9页
This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimizat... This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites. 展开更多
关键词 laminated composites inverse reliability analysis reliability-based design sequential single-loop optimization method PSO
在线阅读 下载PDF
Reliable Space Pursuing for Reliability-based Design Optimization with Black-box Performance Functions 被引量:2
7
作者 SHAN Songqing WANG G Gary 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期27-35,共9页
Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr... Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method. 展开更多
关键词 reliability based design optimization black-box function reliable design space
在线阅读 下载PDF
APPLICATION OF SURROGATE BASED PARTICLE SWARM OPTIMIZATION TO THE RELIABILITY-BASED ROBUST DESIGN OF COMPOSITE PRESSURE VESSELS 被引量:2
8
作者 Jianqiao Chen Yuanfu Tang Xiaoxu Huang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第5期480-490,共11页
A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composit... A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables. 展开更多
关键词 structural optimization reliability based robust design composite pressure vessel surrogate based particle swarm optimization sequential algorithm
原文传递
Reliability Based Design Optimization of Aero-Engine Spindle Ball Bearings 被引量:2
9
作者 杨静 孟德彪 +2 位作者 张小玲 汪忠来 许焕卫 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期853-855,共3页
Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliabilit... Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution. 展开更多
关键词 aero-engine spindle ball bearing complex stresses reliability based design optimization structure design
在线阅读 下载PDF
RELIABILITY AND OPTIMIZATION DESIGN OF NEW ROLLER ORIENTATION CLUTCH 被引量:1
10
作者 Luo Yixin Department of Resources Engineering,Xiangtan Polytechnic Uneversity, Xiangtan 411201,China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期69-74,共6页
The mechanical reliability and optimization theory on the method ofreliability-optimization design for the new roller orientation clutch is provided. The result ofreliability-optimization design is compared with the r... The mechanical reliability and optimization theory on the method ofreliability-optimization design for the new roller orientation clutch is provided. The result ofreliability-optimization design is compared with the result of the conventional design method. 展开更多
关键词 CLUTCH reliability-optimization design ROLLER design
在线阅读 下载PDF
Genetic optimization of reliability design of machine element
11
作者 郭观七 喻寿益 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期315-318,共4页
Canonical genetic algorithms have the defects of prematurity and stagnation when applied in optimization problems. The causes resulting in such phenomena were analyzed and a class of improved genetic algorithm with ni... Canonical genetic algorithms have the defects of prematurity and stagnation when applied in optimization problems. The causes resulting in such phenomena were analyzed and a class of improved genetic algorithm with niche implemented by crossover of similar individuals and ( μ+λ ) selection was proposed. According to the reliability design theory of machine components, the genetic optimization model of jack clutch was obtained. An optimization instance and some results calculated by improved genetic algorithm were presented. The results of emulations and application show that the improved genetic algorithm with the niche technique can achieve the reliable global convergence and stable convergent velocity almost without any additional calculation expense. [ 展开更多
关键词 genetic optimization NICHE mechanism design reliability design
在线阅读 下载PDF
Optimization design of piles subjected to horizontal loads based on reliability theory
12
作者 赵文艺 徐志军 郑俊杰 《Journal of Central South University》 SCIE EI CAS 2014年第7期2928-2934,共7页
Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,varia... Based on reliability theory,a general method for the optimization design of piles subjected to horizontal loads is presented.This method takes into consideration various uncertainties caused by pile installation,variability of geotechnical materials from one location to another,and so on.It also deals with behavior and side constraints specified by standard specifications for piles.To more accurately solve the optimization design model,the first order reliability method is employed.The results from the numerical example indicate that the target reliability index has significant influence on design parameters.In addition,the optimization weight increases with the target reliability index.Especially when the target reliability index is relatively large,the target reliability index has significant influence on design weight of piles. 展开更多
关键词 reliability-based optimization design horizontal load objective function boundary condition first order reliability method
在线阅读 下载PDF
An Overview of Recently Developed Coupled Simulation Optimization Approaches for Reliability Based Minimum Cost Design of Water Retaining Structures
13
作者 Muqdad Al-Juboori Bithin Datta 《Open Journal of Optimization》 2018年第4期79-112,共34页
This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty... This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems. 展开更多
关键词 Linked Simulation-optimization Water-Retaining Structures Machine Learning Technique reliability BASED Optimum design Multi-Realization optimization Model Heterogeneous Hydraulic CONDUCTIVITY
暂未订购
Time-Variant Reliability-Based Multi-Objective Fuzzy Design Optimization for Anti-Roll Torsion Bar of EMU 被引量:7
14
作者 Pengpeng Zhi Zhonglai Wang +1 位作者 Bingzhi Chen Ziqiang Sheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1001-1022,共22页
Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ... Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case. 展开更多
关键词 Anti-roll torsion bar time-variant reliability fuzzy design optimization MULTI-OBJECTIVE
在线阅读 下载PDF
Reliability Simulation and Design Optimization for Mechanical Maintenance 被引量:4
15
作者 LIU Deshun HUANG Liangpei +1 位作者 YUE Wenhui XU Xiaoyan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期594-601,共8页
Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service,which should be accounted for in ... Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service,which should be accounted for in system design.In this paper,a reliability model and reliability-based design optimization methodology for maintenance are presented.First,based on the time-to-failure density function of the part of the system,the age distributions of all parts of the system during service are investigated,a reliability model of the mechanical system for maintenance is developed.Then,reliability simulations of the systems with WeibuU probability density functions are performed,the system minimum reliability and steady reliability for maintenance are defined based on reliability simulation during the life cycle of the system.Thirdly,a maintenance cost model is developed based on replacement rates of the parts,a reliability-based design optimization model for maintenance is presented,in which total life cycle cost is considered as design objective and system reliability as design constrain.Finally,the reliability-based design optimization methodology for maintenance is used to design of a link ring for the chain conveyor,which shows that optimal design with the lowest maintenance cost can be obtained,and minimum reliability and steady reliability of the system can satisfy requirement of system reliability during service of the chain conveyor. 展开更多
关键词 maintenance reliability SIMULATION design optimization
在线阅读 下载PDF
NEW APPROACH FOR RELIABILITY-BASED DESIGN OPTIMIZATION:MINIMUM ERROR POINT 被引量:5
16
作者 LIU Deshun YUE Wenhui +1 位作者 ZHU Pingyu DU Xiaoping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期514-518,共5页
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th... Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions. 展开更多
关键词 reliability Most probable point (MPP) Minimum error point (MEP)reliability-based design optimization (RBDO)
在线阅读 下载PDF
Uncertainty-based Multidisciplinary Design Optimization using An Approximated Second-Order Reliability Analysis Strategy
17
作者 Zhiyuan LYU Hongtao WANG +3 位作者 Hengfei YANG Jiapeng WANG Ketema Mikiyas Solomon Debiao MENG 《Mechanical Engineering Science》 2022年第1期1-5,共5页
In uncertainty-based multidisciplinary design optimization(UBMDO),all reliability limitation factors are maintained due to minimize the cost target function.There are many reliability evaluation methods for reliabilit... In uncertainty-based multidisciplinary design optimization(UBMDO),all reliability limitation factors are maintained due to minimize the cost target function.There are many reliability evaluation methods for reliability limitation factors.The second-order reliability method(SORM)is a powerful most possible point(MPP)-based method.It can provide an accurate estimation of the failure probability of a highly nonlinear limit state function despite its large curvature.But the Hessian calculation is necessary in SORM,which results in a heavy computational cost.Recently,an efficient approximated second-order reliability method(ASORM)is proposed.The ASORM uses a quasi-Newton method to close to Hessian without the direct calculation of Hessian.To further improve the UBMDO efficiency,we also introduce the performance measure approach(PMA)and the sequential optimization and reliability assessment(SORA)strategy.To solve the optimization design problem of a turbine blade,the formula of MDO with ASORM under the SORA framework(MDO-ASORM-SORA)is proposed. 展开更多
关键词 UNCERTAINTY reliability analysis optimization design turbine blade
在线阅读 下载PDF
Multi-objective reliability optimization design of high-speed heavy-duty gears based on APCK-SORA model
18
作者 Zhenliang YU Shuo WANG +1 位作者 Fengqin ZHAO Chenyuan LI 《Mechanical Engineering Science》 2022年第2期49-56,I0006,共9页
For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization... For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears. 展开更多
关键词 APCK-SORA model high-speed heavy-duty gears multi-objective reliability optimization design k-means clustering method
在线阅读 下载PDF
DYNAMIC RESPONSE OPTIMIZATION DESIGN FOR ENGINEERING STRUCTURES BASED ON RELIABILITY 被引量:11
19
作者 戴君 陈建军 +2 位作者 李永公 赵竹青 马洪波 《应用数学和力学》 EI CSCD 北大核心 2003年第1期39-46,共8页
In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o... In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach. 展开更多
关键词 工程结构 动力响应 动力灵敏度 可靠性约束 优化设计 动应力 动位移
在线阅读 下载PDF
Research on Low Cycle Fatigue Reliability-based Robust Design Optimization of Turbine Blade 被引量:8
20
作者 PENG Maolin YANG Zichun CAO Yueyun CHU Zhuli 《中国电机工程学报》 EI CSCD 北大核心 2013年第11期I0015-I0015,17,共1页
针对涡轮叶片低周疲劳可靠性稳健设计优化问题,对叶片材料进行了高温疲劳试验,采用定量方程随机化方法处理试验数据,获得叶片材料的概率-应变-寿命曲线。采用贝塞尔曲线描述叶片型线方程,建立了涡轮叶片结构及流场的参数化模型,采... 针对涡轮叶片低周疲劳可靠性稳健设计优化问题,对叶片材料进行了高温疲劳试验,采用定量方程随机化方法处理试验数据,获得叶片材料的概率-应变-寿命曲线。采用贝塞尔曲线描述叶片型线方程,建立了涡轮叶片结构及流场的参数化模型,采用热-流-固耦合有限元法对涡轮流场和叶片进行了数值分析,得到叶片动能效率和应力应变分布特性。建立了叶片疲劳可靠性稳健设计优化模型,并采用响应面法获得叶片结构性能函数和极限状态函数,将叶片低周疲劳可靠性作为基本约束条件,采用序列二次规划优化法得到设计优化结果。研究结果表明,优化后的叶片低周疲劳可靠性以及稳健性显著提高,模型及方法正确可行,可用于涡轮叶片以及其他复杂结构的低周疲劳可靠性稳健设计优化。 展开更多
关键词 燃气涡轮叶片 稳健优化设计 疲劳可靠性 低循环 低周疲劳损伤 燃气涡轮机 燃气轮机 破坏模式
原文传递
上一页 1 2 50 下一页 到第
使用帮助 返回顶部