A method and procedure of high cycle fatigue life prediction for helicopter transmission system tail gearbox casing is presented, including fatigue test load, three parameters S-N curve, reduction factor and cumulativ...A method and procedure of high cycle fatigue life prediction for helicopter transmission system tail gearbox casing is presented, including fatigue test load, three parameters S-N curve, reduction factor and cumulative damage law. According to the fatigue test results, the design load spectrum and the three parameters S-N curve, a fatigue life prediction of the tail gearbox casing of a helicopter is performed as an example.展开更多
The accessory gearbox is a crucial component of the power transmission system of an aero-engine.The current design of the accessory gearbox case heavily relies on engineering experience,resulting in a bulky and heavy ...The accessory gearbox is a crucial component of the power transmission system of an aero-engine.The current design of the accessory gearbox case heavily relies on engineering experience,resulting in a bulky and heavy structure.This makes it increasingly challenging to meet the design requirements of high-power density.This work proposes a multi-objective topology optimization method based on the compromise programming method for the aero-engine accessory gearbox case.By locally thinning the gearbox case wall thickness,the case weight is reduced by 12.7%,and the maximum Mises stress is also reduced by 19.7%compared to the initial design scheme.Furthermore,the maximum vibration acceleration amplitude is reduced by 23.9%.These results provide a new solution for the lightweight design of the aero-engine accessory gearbox case.展开更多
文摘A method and procedure of high cycle fatigue life prediction for helicopter transmission system tail gearbox casing is presented, including fatigue test load, three parameters S-N curve, reduction factor and cumulative damage law. According to the fatigue test results, the design load spectrum and the three parameters S-N curve, a fatigue life prediction of the tail gearbox casing of a helicopter is performed as an example.
基金supported by the Chongqing Outstanding Young Scientist Fund(Grant No.CSTB2023NSCQJQX0016)the National Natural Science Foundation of China(Grant No.52322504)。
文摘The accessory gearbox is a crucial component of the power transmission system of an aero-engine.The current design of the accessory gearbox case heavily relies on engineering experience,resulting in a bulky and heavy structure.This makes it increasingly challenging to meet the design requirements of high-power density.This work proposes a multi-objective topology optimization method based on the compromise programming method for the aero-engine accessory gearbox case.By locally thinning the gearbox case wall thickness,the case weight is reduced by 12.7%,and the maximum Mises stress is also reduced by 19.7%compared to the initial design scheme.Furthermore,the maximum vibration acceleration amplitude is reduced by 23.9%.These results provide a new solution for the lightweight design of the aero-engine accessory gearbox case.