Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional load...Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional loaded tooth contact analysis(3D-LTCA)method which can consider tooth modification and coupling assembly errors is proposed,and mesh stiffness calculated by proposed method is verified by MASTA software.Secondly,based on neural network,the surrogate model(SM)that maps the relationship between modification parameters and mesh mechanical parameters is established,and its accuracy is verified.Finally,SM is introduced to establish an optimization model with the target of minimizing mesh stiffness variations and obtaining more even load distribution on mesh surface.The results show that even considering training time,the efficiency of gear pair optimization by surrogate model is still much higher than that by LTCA method.After optimization,the mesh stiffness fluctuation of gear pair with coupling assembly error is reduced by 34.10%,and difference in average contact stresses between left and right regions of the mesh surface is reduced by 62.84%.展开更多
Gears play an important role in mechanical engineering because of their moment and speed transmission possibilities. Design and optimization of a complete gearbox provide many requirements to the designer. The complex...Gears play an important role in mechanical engineering because of their moment and speed transmission possibilities. Design and optimization of a complete gearbox provide many requirements to the designer. The complex gearbox model consists of many machine elements (shafts, gears, bearings, housing, seals, and shaft-hub connections). The gearbox must be understood as a system with interactive parts. Next to the calculation of kinematics, load capacities and life times of single elements, aspects of load distribution and efficiency and noise excitation of gearboxes become important. The wide range of knowhow needed mostly cannot be covered by a small number of engineers. The development of automated calculation routines with understandable and comprehensive results is the goal for these research projects that lead to sottware-realizing solutions for engineers to efficiently design, calculate, optimize and verify gearboxes with minimal resources in terms of calculation experts and time.展开更多
Tooth surface wear damage is one of the main causes of gearing system failure.Excessive wear leads to tooth profile loss and an increase in transmission errors,as the worn gear surfaces are no longer conjugate.Thus,th...Tooth surface wear damage is one of the main causes of gearing system failure.Excessive wear leads to tooth profile loss and an increase in transmission errors,as the worn gear surfaces are no longer conjugate.Thus,the enhancement of gear durability against wear is important for gear application.Recent works show that cutter modification can aid in reducing the tool wear in gear processing,while the wear performance of the gears produced by modified cutters is still unknown.Therefore,this study focuses on the wear performance of the gear generated by modified cutter.Numerical results show that the wear resistance can be enhanced through proper cutter modification.展开更多
基金Project(11972112)supported by the National Natural Science Foundation of ChinaProject(N2103024)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(J2019-IV-0018-0086)supported by the National Science and Technology Major Project,China。
文摘Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional loaded tooth contact analysis(3D-LTCA)method which can consider tooth modification and coupling assembly errors is proposed,and mesh stiffness calculated by proposed method is verified by MASTA software.Secondly,based on neural network,the surrogate model(SM)that maps the relationship between modification parameters and mesh mechanical parameters is established,and its accuracy is verified.Finally,SM is introduced to establish an optimization model with the target of minimizing mesh stiffness variations and obtaining more even load distribution on mesh surface.The results show that even considering training time,the efficiency of gear pair optimization by surrogate model is still much higher than that by LTCA method.After optimization,the mesh stiffness fluctuation of gear pair with coupling assembly error is reduced by 34.10%,and difference in average contact stresses between left and right regions of the mesh surface is reduced by 62.84%.
文摘Gears play an important role in mechanical engineering because of their moment and speed transmission possibilities. Design and optimization of a complete gearbox provide many requirements to the designer. The complex gearbox model consists of many machine elements (shafts, gears, bearings, housing, seals, and shaft-hub connections). The gearbox must be understood as a system with interactive parts. Next to the calculation of kinematics, load capacities and life times of single elements, aspects of load distribution and efficiency and noise excitation of gearboxes become important. The wide range of knowhow needed mostly cannot be covered by a small number of engineers. The development of automated calculation routines with understandable and comprehensive results is the goal for these research projects that lead to sottware-realizing solutions for engineers to efficiently design, calculate, optimize and verify gearboxes with minimal resources in terms of calculation experts and time.
基金The authors would like to thank the National Natural Science Foundation of China(Nos.51805062 and 51805060)for their support in conducting this research.
文摘Tooth surface wear damage is one of the main causes of gearing system failure.Excessive wear leads to tooth profile loss and an increase in transmission errors,as the worn gear surfaces are no longer conjugate.Thus,the enhancement of gear durability against wear is important for gear application.Recent works show that cutter modification can aid in reducing the tool wear in gear processing,while the wear performance of the gears produced by modified cutters is still unknown.Therefore,this study focuses on the wear performance of the gear generated by modified cutter.Numerical results show that the wear resistance can be enhanced through proper cutter modification.