期刊文献+
共找到1,443篇文章
< 1 2 73 >
每页显示 20 50 100
Design of Pinion Machine Tool-settings for Spiral Bevel Gears by Controlling Contact Path and Transmission Errors 被引量:12
1
作者 曹雪梅 方宗德 +1 位作者 许浩 苏进展 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第2期179-186,共8页
This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given... This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears. 展开更多
关键词 spiral bevel gear contact path transmission error blank offset tooth contact analysis
在线阅读 下载PDF
Design of face-hobbed spiral bevel gears with reduced maximum tooth contact pressure and transmission errors 被引量:11
2
作者 Vilmos Simon 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期777-790,共14页
The aim of this study is to define optimal tooth modifications, introduced by appropriately chosen head-cutter geometry and machine tool setting, to simultaneously minimize tooth contact pressure and angular displacem... The aim of this study is to define optimal tooth modifications, introduced by appropriately chosen head-cutter geometry and machine tool setting, to simultaneously minimize tooth contact pressure and angular displacement error of the driven gear (transmission error) of face-hobbed spiral bevel gears. As a result of these modifications, the gear pair becomes mismatched, and a point contact replaces the theoretical line contact. In the applied loaded tooth contact analysis it is assumed that the point contact under load is spreading over a surface along the whole or part of the ‘‘potential’’ contact line. A computer program was developed to implement the formulation provided above. By using this program the influence of tooth modifications introduced by the variation in machine tool settings and in head cutter data on load and pressure distributions, transmission errors, and fillet stresses is investigated and discussed. The correlation between the ease-off obtained by pinion tooth modifications and the corresponding tooth contact pressure distribution is investigated and the obtained results are presented. 展开更多
关键词 Ease-off Face-hobbed spiral bevel gears Load distribution Transmission errors gear teeth
原文传递
Mathematical modeling and characteristics analysis for the nutation gear drive based on error parameters 被引量:2
3
作者 纪文套 姚立纲 zhang jun 《Journal of Chongqing University》 CAS 2016年第4期149-158,共10页
We focused on the mathematical modeling and characteristics analysis for the nutation drive based on error parameters. The crown gear tooth profile equation was introduced according to the national standard double cir... We focused on the mathematical modeling and characteristics analysis for the nutation drive based on error parameters. The crown gear tooth profile equation was introduced according to the national standard double circular arc tooth profile and based on the equal tooth strength principle. The nutation drive meshing coordinate system was set up by introducing the cone vertex error, tilt error, nutation angle error and spiral angle error. The tooth profile equations of the double circular arc external and internal spiral bevel gears were further obtained based on the crown gear tooth profile equation concerning above mentioned error parameters. The influences of the nutation gear reducer tooth contact conditions were analyzed with the gear tilt error and axial misalignment error. Finally, the correctness of the theoretical analysis was verified by the contact spot test. 展开更多
关键词 NUTATION DRIVE double CIRCULAR ARC SPIRAL bevel gear internal bevel gear error analysis
在线阅读 下载PDF
Influence of Setting Error of Tool on Tooth Profile and Contact Point of Face Gear Drive 被引量:2
4
作者 李晓贞 朱如鹏 +1 位作者 李政民卿 李发家 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期370-376,共7页
In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,... In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,the equations of tooth profile and contact points of face gear drive are derived by envelope principle.According to the equations,the change of tooth profile and the contact points position on face gear are analyzed.The tooth surface and contact points are obtained by numerical simulation.Results show that the tooth profile and contact characteristic of face gear drive are not sensitive to the setting error of tool. 展开更多
关键词 face gear setting error tooth profile contact characteristic
在线阅读 下载PDF
Influence of Alignment Errors on Contact Pressure during Straight Bevel Gear Meshing Process 被引量:4
5
作者 HAN Xinghui HUA Lin +1 位作者 DENG Song LUO Qiuping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1089-1099,共11页
Straight bevel gears are widely applied in automotive, aerospace, chemical and many other fields as one of the most common type of gears. Currently, the researches on straight bevel gears have focused on the fields of... Straight bevel gears are widely applied in automotive, aerospace, chemical and many other fields as one of the most common type of gears. Currently, the researches on straight bevel gears have focused on the fields of fatigue, wear, noise and vibration, while little attention is paid to the effect of multiple alignment errors on the gear tooth wear. To study the influence of alignment errors on the gear tooth wear, a simulated model of a straight bevel gear pair is established. Then, the contact pressure on the tooth surface is analyzed under the various alignment errors according to the Archard wear relationship. The main combinations of alignment errors played vital roles on the tooth wear are investigated. The result shows that under the single alignment error, the contact pressure moves to the tooth heel and increases greatly at here when ?P=0.1 or ?G=0.1; when ?E=–0.03, the contact pressure greatly increases at the tooth heel, but it obviously increases at the tooth toe when ?E=0.03; the alignment error ?γ=1 has little effect on the contact pressure on the tooth surface. Moreover, the combination of ?P, ?G, ?E〈0 and ?γ is the most dangerous type among the multiple alignment errors. This research provides valuable guidelines for predicting the tooth wear under various alignment errors. 展开更多
关键词 straight bevel gear multiple alignment errors contact pressure WEAR
在线阅读 下载PDF
New method for calculating face gear tooth surface involving worm wheel installation errors 被引量:6
6
作者 崔伟 唐进元 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1767-1778,共12页
The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive th... The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface. 展开更多
关键词 face gear grinding worm wheel installation errors VERICUT error analysis
在线阅读 下载PDF
Excitation Prediction by Dynamic Transmission Error under Sliding Friction in Helical Gear System 被引量:1
7
作者 李文良 王黎钦 常山 《Transactions of Tianjin University》 EI CAS 2013年第6期448-453,共6页
Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-a... Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction. 展开更多
关键词 helical gear time-varying contact line transmission error dynamic factor
在线阅读 下载PDF
Modification Design Method for an Enveloping Hourglass Worm Gear with Consideration of Machining and Misalignment Errors 被引量:15
8
作者 DENG Xingqiao WANG Jinge HORSTEMEYER Mark F 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期948-956,共9页
The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for e... The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG. 展开更多
关键词 worm gears tooth contact analysis machining and misalignment errors tooth profile errors modification method
在线阅读 下载PDF
Smooth Operation with Manufacture Error and Modification of Cycloidal Pin Gearing
9
作者 李充宁 《International Journal of Mining Science and Technology》 SCIE EI 1998年第1期66-68,共3页
The paper considers the modification or the manufacture error of cycloidal gear, then analyzes the relationship of pin circle meshed with the modified cycloidal gear, discuases the amount of error that leads to destro... The paper considers the modification or the manufacture error of cycloidal gear, then analyzes the relationship of pin circle meshed with the modified cycloidal gear, discuases the amount of error that leads to destroying conjugate action and results in the changes of tbe instantaneous velocity ratio and so as to affect the smooth operation of cycloidal pin gearing. The idea of the relationship between amount of modification aud manufacture error and the smooth operation can be gotten from the curve diagrams of the instantaneous velocity ratio. Therefore, the directions for improving the reature of the cycloidal pin gear transmission are clear. 展开更多
关键词 instantaneous VELOCITY ratio cycloidal PIN gear engaging MANUFACTURE error
在线阅读 下载PDF
ERROR PROCESSING METHOD OF CYCLOIDAL GEAR MEASUREMENT USING 3D COORDINATES MEASURING MACHINE 被引量:3
10
作者 Zhai, Haiyun Li, Zhen +1 位作者 Chen, Lincai Bi, Fengjie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1998年第3期33-37,共5页
An error processing method is presented based on optimization theory and microcomputer technique which can be successfully used in the cycloidal gear measurement on three dimensional coordinates measuring machine (CMM... An error processing method is presented based on optimization theory and microcomputer technique which can be successfully used in the cycloidal gear measurement on three dimensional coordinates measuring machine (CMM). In the procedure, the minimum quadratic sum of the normal deviation is used as the object function and the equidistant curve is dealed with instead of the teeth profile. CMM is a high accurate measuring machine which can provide a way to evaluate the accuracy of the cycloidal gear completely. 展开更多
关键词 Cycloidal gear errorS CMM error processing method
全文增补中
Analysis and correction of the machining errors of small plastic helical gears by ball-end milling
11
作者 Gao Sande Huang Loulin and Han Baoling 《Computer Aided Drafting,Design and Manufacturing》 2012年第1期61-65,共5页
Many small-size precise plastic helical involutes gears are used in electrical appliances to transmit rotary movements con- tinuously and smoothly. Ball-end milling is an effective method for trial manufacture or smal... Many small-size precise plastic helical involutes gears are used in electrical appliances to transmit rotary movements con- tinuously and smoothly. Ball-end milling is an effective method for trial manufacture or small batch production of this type of gear, but the precision of the gear is usually low. In this research, the main sources of the errors of the gear, machining errors of the tooth profile and trace of the gear obtained were analyzed. The correction amounts for these errors are then determined by using a CNC gear tester. They are used to generate a new 3D-CAD model for gear machining with better nrecision. 展开更多
关键词 small plastic helical gear CAD/CAM ball-end milling machining error CNC gear tester error correction
在线阅读 下载PDF
A Method for Identification and Compensation of Machining Errors of Digital Gear Tooth Surfaces
12
作者 WANG Fulin~1 YI Chuanyun~2 CHEN Jing~1 YANG Shuzi~2 (1.College of Mechanical and Automotive Engineering,Hunan University,Changsha 410082,China, 2.School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1135-1139,共5页
In order to generate the digital gear tooth surfaces(DGTS)with high efficiency and high precision,a method for identification and compensation of machining errors is demonstrated in this paper.Machining errors are ana... In order to generate the digital gear tooth surfaces(DGTS)with high efficiency and high precision,a method for identification and compensation of machining errors is demonstrated in this paper.Machining errors are analyzed directly from the real tooth surfaces.The topography data of the part are off-line measured in the post-process.A comparison is made between two models:CAD model of DGTS and virtual model of the physical measured surface.And a matching rule is given to determine these two surfaces in an appropriate fashion.The developed error estimation model creates a point-to-point map of the real surface to the theoretical surface in the normal direction.A“pre-calibration error compensation”strategy is presented.Through processing the results of the first trail cutting,the total compensation error is predicted and an imaginary digital tooth surface is reconstructed. The machining errors in the final manufactured surfaces are minimized by generating this imaginary surface.An example of ma- chining 2-D DGTS verifies the developed method.The research is of important theoretical and practical value to manufacture the DGTS and other digital conjugate surfaces. 展开更多
关键词 DIGITAL gear TOOTH surfaces(DGTS) machining error TOPOGRAPHY measurement error analysis error COMPENSATION
在线阅读 下载PDF
ANALYSIS OF TOOTH FORM ERROR OF EQUAL BASE CIRCLE BEVEL GEAR 被引量:1
13
作者 Gong Yunpeng Ding Shichao Cai Chunyuan(Northeastern University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第4期287-290,共17页
The basic principle of equal base circle bevel gear (EBCBG) is illustrated simply Thetooth surface equation of EBCBG manufactured by end milling cutter with involute profile is de-rived. The tooth form error is analy... The basic principle of equal base circle bevel gear (EBCBG) is illustrated simply Thetooth surface equation of EBCBG manufactured by end milling cutter with involute profile is de-rived. The tooth form error is analyzed on the basis of spherical involute 展开更多
关键词 Equal base circle bevel gear Tooth surface equation Tooth form error
全文增补中
Development of a Digital Model of a Gear Rotor System for Fault Diagnosis Using the Finite Element Method and Machine Learning
14
作者 Anubhav Srivastava Rajiv Tiwari 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期121-136,共16页
Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear t... Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations. 展开更多
关键词 digital model finite element modeling gear profile errors geared-rotor system machine learning
在线阅读 下载PDF
Effects of Comprehensive Eccentricity of Involute Cam on Gear Profile Deviations 被引量:5
15
作者 WANG Liding LING Siying +2 位作者 MAYong WANG Xiaodong LOU Zhifeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期392-398,共7页
The manufacturing accuracy of ultra-precision master gears signifies the technological capability of the ultra-precision gear.Currently,there is little report about the manufacturing technologies of ultra-precision ma... The manufacturing accuracy of ultra-precision master gears signifies the technological capability of the ultra-precision gear.Currently,there is little report about the manufacturing technologies of ultra-precision master gears at home and aboard.In order to meet the requirement of grinding ultra precision master gear,the gear grinder with flat-faced wheel Y7125 is chosen as the object machine tool and the geometric model of its precision generating part,the involute cam,is established.According to the structure of the involute cam,the effective working section and its adjustable range of the cam are determined,and the mathematical expressions of the effects of comprehensive eccentricity of the involute cam on gear profile deviations are derived.According to the primary harmonic trends of the deviation curve,it is shown that gear profile form and slope deviations in different work generating sections of the involute cam are different which the latter changes with the cam eccentricity obviously.Then,the issues of extreme values and methods of error compensation are studied and the conclusion that large adjustable range is benefit to search the optimal involute-cam section which is responding to the minimum gear profile deviations is obtained.A group of examples are calculated by choosing master gears with d=120 mm and m=2-6 mm and an involute cam with base diameter djcam =117 mm.And it is found that the maximum gear profile deviation counts for no more than 5% of the cam eccentricity after error compensation.A gear-grinding experiment on the master gear with m=2 mm is conducted by choosing different sections of the involute cam and the differences of gear profile deviations then the existence of the cam eccentricity are verified.The research discloses the rule of gear profile deviations caused by the comprehensive eccentricity of the involute cam and provides the theoretical guidance and the processing methods for grinding profile of the ultra precision master gear. 展开更多
关键词 gear grinder with flat-faced wheel involute cam ultra precision master gear gear profile deviations error compensation
在线阅读 下载PDF
Improved Relief Grinding Method of Gear Hob with Equal Relief Angle 被引量:4
16
作者 LI Guolong SUN Menghui +2 位作者 LI Xianguang LIU Fei HUANG Chao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期842-850,共9页
The regrinding error is the main factor affecting the eligible length of hob tooth,how to decrease the regrinding error is a hot issue in the research area of hob grinding.At present,researches focus on changing the t... The regrinding error is the main factor affecting the eligible length of hob tooth,how to decrease the regrinding error is a hot issue in the research area of hob grinding.At present,researches focus on changing the trajectory of relief moving,because of no unified relief grinding path planning method,the research result is restricted in the practical application.For solving the problem,the calculation model of the hob relief angle is established with the Archimedes relieving motion to analyze the interaction between the increasing relief angle of the hob and the accelerating tooth profile errors.Based on it,the improved relief grinding method of gear hob is proposed with equal relief angle(ERA).Furthermore,the relief grinding method with ERA is developed with the following two steps.Firstly,the convergence numerical solution algorithm of the tooth top curve is designed to form the wheel motion path which is compared with that of traditional grinding.The second step is to establish the solution model of ERA grinding wheel.In order to verify the effect of the method,hob grinding simulation system of 3D solid was built under the AutoCAD environment.The regrinding errors is analyzed by intercepting the hob axial profiles of the various regrinding angles with Boolean operations and further converting it to basic rack tooth,then the simulation example of zero rake straight flute hob is used to compare the regrinding errors between ERA grinding and traditional grinding.Finally,the experiments were implemented on the five-axis CNC relief grinder with the relief motion of ERA grinding driven by cam.The results of experiments show that the method can effectively reduce the regrinding errors of hob and grind expediently gear hob of AA rank and over.This research provide an effective model of relief moving path plan reducing regrinding error,and have practicable value in CNC relief grinder. 展开更多
关键词 gear hob relief grinding grinding wheel regrinding error SIMULATION
在线阅读 下载PDF
Study on the Intelligent System of Gear Pitch Deviation Measurement and Analysis
17
作者 FU Fenglan TAN Haiyan School of Electromechanical Engineering, Wuhan University of Technology, Wuhan 430070, China, 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1068-1070,共3页
The intelligent controlling and data process of pitch error measurement is proposed.The whole system takes C<sup>++</sup> as the development tool and takes advantages of object-oriented and visualization,h... The intelligent controlling and data process of pitch error measurement is proposed.The whole system takes C<sup>++</sup> as the development tool and takes advantages of object-oriented and visualization,having the advantages of easy operation and hu- manistic interface.In the meanwhile,the system can be complemented and improved according to the demand of user,having cer- tain independence.The research of the system provides an efficient and reliable way to measure and analyze the gear pitch,which can be referenced in the future research. 展开更多
关键词 gear PITCH error MEASUREMENT INTELLIGENT SYSTEM C++
在线阅读 下载PDF
Perturbation Theory Combined with Boundary Element Method for Analysis of Gear Contact Problems
18
作者 罗立风 常山 陈谌闻 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1997年第3期48-52,共5页
This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure d... This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure distribution in gear drive through theperturbation of a cubic order geometry,there by greatly bringing down both computationwork volume and cost and providing a powerful tool for engineering study on the effectof errors on structural strength. 展开更多
关键词 PERTURBATION theory BOUNDARY ELEMENT method error gear
在线阅读 下载PDF
面齿轮蜗杆砂轮磨削安装误差分析及补偿 被引量:1
19
作者 李国龙 蒲峙杉 +3 位作者 何坤 王梓宇 宁行 张薇 《计算机集成制造系统》 北大核心 2025年第2期452-463,共12页
为了提高面齿轮的磨削加工精度,提出一种齿面误差补偿方法。基于普通蜗杆砂轮磨齿机的机械结构,分析其磨削原理,规划砂轮磨削运动轨迹,并分别建立含刀具同轴度误差和工件平面度误差的面齿轮齿面模型,分析各自对齿面误差的影响规律;提出... 为了提高面齿轮的磨削加工精度,提出一种齿面误差补偿方法。基于普通蜗杆砂轮磨齿机的机械结构,分析其磨削原理,规划砂轮磨削运动轨迹,并分别建立含刀具同轴度误差和工件平面度误差的面齿轮齿面模型,分析各自对齿面误差的影响规律;提出一种基于自适应完备集合经验模态分解的随机误差分离方法,消除齿面测量结果中的随机误差;研究齿面误差分布情况,分析可能造成误差的原因,并依据齿面误差影响规律对机床参数进行修正,以实现误差补偿。最后完成磨齿和测量,结果表明齿面最大法向误差减小79.8%,最大齿形和齿向误差分别减小67.6%和72.4%,齿面精度提高显著。 展开更多
关键词 面齿轮 蜗杆砂轮磨削 误差分析 误差分离 误差补偿
在线阅读 下载PDF
Power Splitting Behavior of Star Gearing Based on Deformation Compatibility
20
作者 DU Jin-fu FANG Zong-de DONG Hao 《International Journal of Plant Engineering and Management》 2013年第2期80-86,共7页
The deformation compatibility equations and the torque balance equations of star gearing with three branches have been found based on the characteristic that the system composes a closed-loop of power flow. In conside... The deformation compatibility equations and the torque balance equations of star gearing with three branches have been found based on the characteristic that the system composes a closed-loop of power flow. In consideration of the parts manufacturing errors, assembly errors, bearing stiffness and float, the power splitting rate of each star gear and the system were calculated by using the theory of equivalent mesh error. The effects of the errors, float and the bearing stiffness on power splitting were studied. The study provides a useful theoretical guideline for the design of star gearing. 展开更多
关键词 star gearing deformation compatibility power splitting errorS FLOAT
在线阅读 下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部