期刊文献+
共找到2,142篇文章
< 1 2 108 >
每页显示 20 50 100
Bus arrival interval prediction model based on gated recurrent unit network
1
作者 ZHANG Bing WU Shuang +2 位作者 LIU Ying NI Xunyou LIU Kexin 《Journal of Southeast University(English Edition)》 2025年第2期226-234,共9页
By analyzing the bus operation environment and accounting for prediction uncertainties,a bus arrival interval prediction model was developed utilizing a gated recur-rent unit(GRU)neural network.To reduce the impact of... By analyzing the bus operation environment and accounting for prediction uncertainties,a bus arrival interval prediction model was developed utilizing a gated recur-rent unit(GRU)neural network.To reduce the impact of irrelevant data and boost prediction accuracy,an attention mechanism was integrated into the point model to concen-trate on important input sequence information.Based on the point predictions,the lower upper bound estimation(LUBE)method was used,providing a range for the bus interval times predicted by the model.The model was vali-dated using data from 169 bus routes in Nanchang,Jiangxi Province.The results indicated that the attention-GRU model outperformed neural network,long short-term memory and GRU models.Compared with the Bootstrap method,the LUBE method has a narrower average interval width.The coverage width-based criterion(CWC)was reduced by 8.1%,2.2%,and 5.7%at confidence levels of 85%,90%,and 95%,respectively,during the off-peak period,and by 23.2%,26.9%,and 27.3%at confidence levels of 85%,90%,and 95%,respectively,during the peak period.Therefore,it can accurately describe the fluctuation range in bus arrival times with higher accuracy and stability. 展开更多
关键词 public transportation gated recurrent unit net-work attention mechanism lower upper bound estimation
在线阅读 下载PDF
Aerial target threat assessment based on gated recurrent unit and self-attention mechanism 被引量:4
2
作者 CHEN Chen QUAN Wei SHAO Zhuang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期361-373,共13页
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ... Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning. 展开更多
关键词 target threat assessment gated recurrent unit(GRU) self-attention(SA) fractional Fourier transform(FRFT)
在线阅读 下载PDF
A gated recurrent unit model to predict Poisson’s ratio using deep learning 被引量:1
3
作者 Fahd Saeed Alakbari Mysara Eissa Mohyaldinn +4 位作者 Mohammed Abdalla Ayoub Ibnelwaleed A.Hussein Ali Samer Muhsan Syahrir Ridha Abdullah Abduljabbar Salih 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期123-135,共13页
Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe... Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs. 展开更多
关键词 Static Poisson’s ratio Deep learning gated recurrent unit(GRU) Sand control Trend analysis Geomechanical properties
在线阅读 下载PDF
Prediction of rock mass classification in tunnel boring machine tunneling using the principal component analysis (PCA)-gated recurrent unit (GRU) neural network
4
作者 Ke Man Liwen Wu +3 位作者 Xiaoli Liu Zhifei Song Kena Li Nawnit Kumar 《Deep Underground Science and Engineering》 2024年第4期413-425,共13页
Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project... Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage. 展开更多
关键词 gated recurrent unit(GRU) prediction of rock mass classification principal component analysis(PCA) TBM tunneling
原文传递
A HybridManufacturing ProcessMonitoringMethod Using Stacked Gated Recurrent Unit and Random Forest
5
作者 Chao-Lung Yang Atinkut Atinafu Yilma +2 位作者 Bereket Haile Woldegiorgis Hendrik Tampubolon Hendri Sutrisno 《Intelligent Automation & Soft Computing》 2024年第2期233-254,共22页
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ... This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems. 展开更多
关键词 Smart manufacturing process monitoring quality control gated recurrent unit neural network random forest
在线阅读 下载PDF
Minimal Gated Unit for Recurrent Neural Networks 被引量:39
6
作者 Guo-Bing Zhou Jianxin Wu +1 位作者 Chen-Lin Zhang Zhi-Hua Zhou 《International Journal of Automation and computing》 EI CSCD 2016年第3期226-234,共9页
Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many comp... Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many competing and complex hidden units, such as the long short-term memory (LSTM) and the gated recurrent unit (GRU). We propose a gated unit for RNN, named as minimal gated unit (MCU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MCU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MCU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically. 展开更多
关键词 Recurrent neural network minimal gated unit (MGU) gated unit gate recurrent unit (GRU) long short-term memory(LSTM) deep learning.
原文传递
Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data 被引量:4
7
作者 Haibo ZOU Shanshan WU Miaoxia TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1043-1057,共15页
The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). I... The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation. 展开更多
关键词 quantitative precipitation estimation gated Recurrent unit neural network Z-R relationship echo-top height
在线阅读 下载PDF
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:3
8
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction MULTI-SCALE Convolutional neural networks gated recurrent unit
在线阅读 下载PDF
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:13
9
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) gated recurrent unit(GRU)neural network
在线阅读 下载PDF
Gated recurrent unit model for a sequence tagging problem 被引量:1
10
作者 Rekia Kadari Zhang Yu +1 位作者 Zhang Weinan Liu Ting 《High Technology Letters》 EI CAS 2019年第1期81-87,共7页
Combinatory categorial grammer(CCG) supertagging is an important subtask that takes place before full parsing and can benefit many natural language processing(NLP) tasks like question answering and machine translation... Combinatory categorial grammer(CCG) supertagging is an important subtask that takes place before full parsing and can benefit many natural language processing(NLP) tasks like question answering and machine translation. CCG supertagging can be regarded as a sequence labeling problem that remains a challenging problem where each word is assigned to a CCG lexical category and the number of the probably associated CCG supertags to each word is large. To address this, recently recurrent neural networks(RNNs), as extremely powerful sequential models, have been proposed for CCG supertagging and achieved good performances. In this paper, a variant of recurrent networks is proposed whose design makes it much easier to train and memorize information for long range dependencies based on gated recurrent units(GRUs), which have been recently introduced on some but not all tasks. Results of the experiments revealed the effectiveness of the proposed method on the CCGBank datasets and show that the model has comparable accuracy with the previously proposed models for CCG supertagging. 展开更多
关键词 combinatory categorial grammer (CCG) CCG supertagging DEEP LEARNING gateD RECURRENT unit (GRU)
在线阅读 下载PDF
JE BookⅡ Unit 23 Lesson 90 Bill Gates教学设计
11
作者 李玉英 《中国人民教师》 2006年第3期67-69,共3页
一、教材分析 本课为JE BookⅡ中Unit 23(A famous person)的第2课时,是在第1课时的基础上介绍Bill Gates的成长过程及奋斗经历,文中有较乡单词和疑难长句,是能够培养学生猜测、分析、判断能力的阅读课文。
关键词 BookⅡ unit23 Lesson90 教学设计 第1课时 教材分析 《Bill gates》 中学 英语教学
在线阅读 下载PDF
Micro-seismic Event Detection of Hot Dry Rock based on the Gated Recurrent Unit Model and a Support Vector Machine
12
作者 SUN Feng HU Haotian +4 位作者 ZHAO Fa YANG Xinran CHEN Zubin WU Haidong ZHANG Linyou 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1940-1947,共8页
Micro-seismic monitoring is one of the most critical technologies that guide hydraulic fracturing in hot dry rock resource development. Micro-seismic monitoring requires high precision detection of micro-seismic event... Micro-seismic monitoring is one of the most critical technologies that guide hydraulic fracturing in hot dry rock resource development. Micro-seismic monitoring requires high precision detection of micro-seismic events with a low signal-to-noise ratio. Because of this requirement, we propose a recurrent neural network model named gated recurrent unit and support vector machine(GRU;VM). The proposed model ensures high accuracy while reducing the parameter number and hardware requirement in the training process. Since micro-seismic events in hot dry rock produce large wave amplitudes and strong vibrations, it is difficult to reverse the onset of each individual event. In this study, we utilize a support vector machine(SVM) as a classifier to improve the micro-seismic event detection accuracy. To validate the methodology, we compare the simulation results of the short-term-average to the long-term-average(STA/LTA) method with GRU;VM method by using hot dry rock micro-seismic event data in Qinghai Province, China. Our proposed method has an accuracy of about 95% for identifying micro-seismic events with low signal-to-noise ratios. By ignoring smaller micro-seismic events, the detection procedure can be processed more efficiently, which is able to provide a real-time observation on the types of hydraulic fracturing in the reservoirs. 展开更多
关键词 hot dry rock micro-seismic detection gated recurrent unit support vector machine
在线阅读 下载PDF
Turnout fault prediction method based on gated recurrent units model
13
作者 ZHANG Guorui SI Yongbo +1 位作者 CHEN Guangwu WEI Zongshou 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期304-313,共10页
Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain ... Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times. 展开更多
关键词 TURNOUT CLUSTERING convolutinal neural network(CNN) gated recurrent unit(GRU) fault prediction
在线阅读 下载PDF
Predicting Wavelet-Transformed Stock Prices Using a Vanishing Gradient Resilient Optimized Gated Recurrent Unit with a Time Lag
14
作者 Luyandza Sindi Mamba Antony Ngunyi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2023年第1期49-68,共20页
The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models a... The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics. 展开更多
关键词 Optimized gated Recurrent unit Approximation Coefficient Stationary Wavelet Transform Activation Function Time Lag
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:2
15
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于门控注意网络模型的天然气管道泄漏检测新方法 被引量:2
16
作者 董宏丽 孙桐 +2 位作者 王闯 杨帆 商柔 《天然气工业》 北大核心 2025年第1期25-36,共12页
准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模... 准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模型的初始超参数选择通常是随机的,这也可能会导致识别性能不稳定。为了提升天然气管道泄漏检测的准确性,提出一种基于麻雀搜索算法的门控注意网络模型(Sparrow Search Algorithm-based Gate Attention Network, SGAN)。首先,为了提取有效且具有鲁棒性的数据特征,采用带交叉熵函数的麻雀搜索算法对门控循环单元的初始超参数进行全局搜索;然后,设计了一种异常注意力机制,通过对数据特征进行加权来放大正常和泄漏数据之间的区分差异;最后,将所提算法应用于天然气管道的泄漏检测。研究结果表明:(1) SGAN模型能够实现模型超参数的自适应优化,并加快了模型的收敛速度,使模型性能更加稳定;(2) SGAN模型通过对正常与泄漏特征进行加权处理,显著提升了数据特征的区分效果;(3) SGAN模型的学习表示能力和泛化能力得到了明显加强,以此提高了对数据的分类性能;(4) SGAN模型能够显著提高天然气管道泄漏检测的准确率和召回率,可减少误报率和漏报率,并且其性能明显优于常规分类算法。结论认为,SGAN模型通过自适应优化和异常注意力机制结合,能精准识别泄漏特征,并快速响应天然气管道中的泄漏情况,有效提升了检测的准确性和可靠性,显著降低了安全事故风险,为天然气管道泄漏检测提供了一种高效、智能的解决新方案。 展开更多
关键词 天然气管道 泄漏检测 麻雀搜索算法 门控循环单元 异常注意力机制 自适应优化 智能
在线阅读 下载PDF
融合数据分解和优化门控循环单元的水质预测模型及应用 被引量:4
17
作者 郭利进 刘彦宾 +1 位作者 刘文哲 陈剑铮 《环境科学学报》 北大核心 2025年第2期201-213,共13页
水质预测对保护水生态系统和确保人类健康至关重要.为使预测任务更加准确、高效,本研究提出了一种基于模态分解、聚类重构、优化算法及门控循环单元(GRU)的组合预测模型.首先,采用自适应噪声完备集合经验模态分解(CEEMDAN)将原始序列分... 水质预测对保护水生态系统和确保人类健康至关重要.为使预测任务更加准确、高效,本研究提出了一种基于模态分解、聚类重构、优化算法及门控循环单元(GRU)的组合预测模型.首先,采用自适应噪声完备集合经验模态分解(CEEMDAN)将原始序列分解成不同频率的本征模态函数(IMF);其次,通过排列熵算法与K-means聚类方法将复杂度相近的序列进行重构;最后,利用改进蜣螂优化算法优化GRU神经网络,融合各模态的预测结果以获得最终预测值.结果表明,该模型在天津曹庄子泵站监测点数据集上的均方根误差、平均绝对误差、平均绝对百分比误差、R^(2)分别为0.2277、0.1634,1.6393%、0.9566,均优于其他对比模型.在其他监测点的实验中,该方法也表现出色,进一步验证了模型的泛化能力与预测精度.模型具有良好预测性能,可为水质预测提供一种新的有效方法. 展开更多
关键词 CEEMDAN分解 门控循环单元 蜣螂优化算法 排列熵 水质预测
原文传递
卷积自编码器和残差循环神经网络在刀具剩余寿命预测中的应用 被引量:1
18
作者 周学良 潘晓明 吴瑶 《机械科学与技术》 北大核心 2025年第5期806-813,共8页
针对刀具剩余寿命预测问题,提出了一种将一维卷积自编码器(One-dimensional convolutional auto encoder,1DCAE)和残差双向门控循环单元(Residual bidirectional gated recurrent unit,RBGRU)相结合的预测方法。通过1DCAE连续卷积池化... 针对刀具剩余寿命预测问题,提出了一种将一维卷积自编码器(One-dimensional convolutional auto encoder,1DCAE)和残差双向门控循环单元(Residual bidirectional gated recurrent unit,RBGRU)相结合的预测方法。通过1DCAE连续卷积池化和反卷积上采样方法获取工况信号的深层特征,并将其与分段后的原始信号融合后作为刀具剩余寿命的表征;同时结合残差网络的思想对双向门控循环单元(Bidirectional gated recurrent unit,BiGRU)的结构进行改进以增强对时序特征的捕获能力。实验结果表明,该方法比其他算法具有更高的预测精度。 展开更多
关键词 刀具 剩余寿命预测 卷积自编码器 残差门控循环单元 特征融合
在线阅读 下载PDF
融入股票论坛UGC时序特征的上市公司财务困境预测方法 被引量:1
19
作者 张玉 蒋翠清 《合肥工业大学学报(自然科学版)》 北大核心 2025年第3期387-394,共8页
股票论坛用户生成内容(user generated content,UGC)能反映上市公司利益相关者对公司经营业绩和相关事件的关注和观点,具有及时性和动态性,是对财务信息的有效补充。为有效提取动态变化UGC,文章提出一种融入股票论坛UGC时序特征的上市... 股票论坛用户生成内容(user generated content,UGC)能反映上市公司利益相关者对公司经营业绩和相关事件的关注和观点,具有及时性和动态性,是对财务信息的有效补充。为有效提取动态变化UGC,文章提出一种融入股票论坛UGC时序特征的上市公司财务困境预测方法。首先,针对用户评论和用户阅读中的时间序列信息,考虑情感特征时序性和互动信息时序性,采用门控循环网络(gated recurrent unit,GRU)模型,挖掘时间序列中的动态信息;其次,不同时间段下发生的事件对财务困境预测的影响程度不同,采用注意力机制聚合重大事件对财务困境预测的影响;最后,基于UGC时序特征,并结合财务特征对上市公司财务困境进行预测。研究表明,所提方法能够有效地提取并聚合时序特征,提高财务困境预测效果。 展开更多
关键词 股票论坛 时序特征 门控循环网络 注意力机制 财务困境预测
在线阅读 下载PDF
基于基准模型和门控循环单元的电力盗窃检测研究
20
作者 王艳芹 妙红英 +2 位作者 周凤华 张海宁 王禹霖 《微型电脑应用》 2025年第5期138-142,共5页
探讨高级计量基础设施(AMI)中的电力盗窃问题,确保能源管理和计费的正常进行。针对变化传输方法(CAT-AMI)提出一种有效的读数收集方法,但同时也注意了CAT-AMI易受到恶意消费者攻击的风险。采用机器学习模型进行虚假读数检测可能危及消... 探讨高级计量基础设施(AMI)中的电力盗窃问题,确保能源管理和计费的正常进行。针对变化传输方法(CAT-AMI)提出一种有效的读数收集方法,但同时也注意了CAT-AMI易受到恶意消费者攻击的风险。采用机器学习模型进行虚假读数检测可能危及消费者的隐私。因此,在保护消费者隐私的前提下,研究CAT-AMI中的电力盗窃检测问题。为此开发实际读数数据集生成良性数据集,并提出针对CAT-AMI的新网络攻击以生成恶意样本。随后,训练2种深度学习检测器,即基准模型(CNN)和卷积神经网络—门控循环单元(CNN-GRU)模型,来检测CAT-AMI中的电力盗窃行为。为了保护消费者的隐私,提出一种方法,使电力公用事业能够使用加密数据评估检测器,而无法学习读数。研究结果表明,采用CNN-GRU模型在保护消费者隐私的同时能够准确识别恶意消费者,并具有可接受的开销。为CAT-AMI系统提供了安全、隐私保护的电力盗窃检测方案。 展开更多
关键词 高级计量基础设施 电力盗窃检测 变化传输方法 隐私保护 门控循环单元
在线阅读 下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部