The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical ...The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical loads,an interior column is often installed at the center to enhance its load-bearing capacity.This study aims to develop a hyperstatic reaction method(HRM)for the analysis of deformation and structural integrity in this specific tunnel type.The computational model is validated through comparison with the corresponding finite element method(FEM)analysis.Following comprehensive validation,an ensemble machine learning(ML)model is proposed,using numerical benchmark data,to facilitate real-time design and optimization.Subsequently,three widely used ensemble models,i.e.random forest(RF),gradient boosting decision tree(GBDT),and extreme gradient boosting(XGBoost)are compared to identify the most efficient ML model for replacing the HRM model in the design optimization process.The performance metrics,such as the coefficient of determination R2 of about 0.999 and the mean absolute percentage error(MAPE)of about 1%,indicate that XGBoost outperforms the others,exhibiting excellent agreement with the HRM analysis.Additionally,the model demonstrates high computational efficiency,with prediction times measured in seconds.Finally,the HRM-XGBoost model is integrated with the well-known particle swarm optimization(PSO)for the real-time design optimization of quasi-rectangular tunnels,both with and without the interior column.A feature importance assessment is conducted to evaluate the sensitivity of design input features,enabling the selection of the most critical features for the optimization task.展开更多
Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analys...Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.展开更多
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc...The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.展开更多
Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-l...Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-like to large block with the increase of Al3Ti content. The addition of magnesium can markedly change the morphology of Al3Ti and reduce their size. Short rod-like Al3Ti was formed and homogeneous distribution was obtained with the addition of 3 wt.% Mg. The effect of Al3Ti and Mg on the microstructure of Al-Al3Ti composites and the mechanism were also discussed.展开更多
In this article the travelling wave solution for a class of nonlinear reaction diffusion problems are considered. Using the homotopic method and the theory of travelling wave transform, the approximate solution for th...In this article the travelling wave solution for a class of nonlinear reaction diffusion problems are considered. Using the homotopic method and the theory of travelling wave transform, the approximate solution for the corresponding problem is obtained.展开更多
Objective:To investigate the reliability for kinetic assay of substance with background predicted by the integrated method using uricase reaction as model. Methods: Absorbance before uricase action (Δ0) was estim...Objective:To investigate the reliability for kinetic assay of substance with background predicted by the integrated method using uricase reaction as model. Methods: Absorbance before uricase action (Δ0) was estimated by extrapolation with given lag time of steady-state reaction. With Km fixed at 12.5μmol/L, background absorbance (Δb) was predicted by nonlinearly fitting integrated Michaelis-Menten equation to Candida utilis uricase reaction curve. Uric acid in reaction solution was determined by the difference (ΔA) between Δ0 and Δb. Results .Ab usually showed deviation 〈3% from direct assay with residual substrate done fifth of initial substrate for analysis. ΔA showed CV 〈5% with resistance to common interferences except xanthine, and it linearly responded to uric acid with slope consistent to the absorptivity of uric acid. The lower limit was 2.0 μmol/L and upper limit reached 30 μmol/L in reaction solution with data monitored within 8 min reaction at 0. 015 U/ml uricase. Preliminary application to serum and urine gave better precision than the direct equilibrium method without the removal of proteins before analysis. Conclusion .This kinetic method with background predicted by the integrated method was reliable for enzymatic analysis, and it showed resistance to common interferences and enhanced efficiency at much lower cost.展开更多
Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study,...Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study, using oily CRM sludge as sources of iron oxide, the strontium ferrite powders were synthesized in multiple steps including vacuum distillation, magnetic separation, oxidizing roasting, and solidstate reaction. The optimal technological conditions of vacuum distillation and oxidizing roasting were studied carefully. To consider the effects of Fe203/ SrCO3 tool ratio, calcination temperature, milling time and calcination time on magnetic properties of prepared strontium ferrite powders, the orthogonal experimental method was adopted. The maximum saturation magneti- zation (62.6 mA-m2.g-1) of the synthesized strontium ferrite powders was achieved at the Fe203/SrCO3 mol ratio of 6, 5 h milling time, 1250 ~C calcination temperature, and 1 h calcination time. Strontium ferrite powders syn- thesis method not only provides a cheap, high quality raw material for the production of strontium ferrite powders, but also effectively prevents the environmental pollution.展开更多
A patented kinetic uricase method was evaluated for serum uric acid assay. Initial absorbance of the reaction mixture before uricase action (A0) was obtained by correcting the absorbance at 293 nm measured before th...A patented kinetic uricase method was evaluated for serum uric acid assay. Initial absorbance of the reaction mixture before uricase action (A0) was obtained by correcting the absorbance at 293 nm measured before the addition of uricase solution, and background absorbance (Ab) was predicted by an integrated method. Uric acid concentration in reaction solution was calculated from AA, the difference between A0 and Ab, using the absorptivity preset for uric acid. This kinetic uricase method exhibited CV〈4.3% and recovery of 100%. Lipids, bilirubin, hemoglobin, ascorbic acid, reduced glutathione and xanthine 〈0.32 mmol/L in serum had no significant effects. △A linearly responded to 1.2 to 37.5 μmol/L uric acid in reaction solution containing 15 μl serum. The slope of linear response was consistent with the absorptivity preset for uric acid while the intercept was consistent with that for serum alone. Uric acid concentrations in clinic sera by different uricase methods positively correlated to each other. By Bland-Altman analysis, this kinetic uricase method accorded with that by quantifying the total change of UV absorbance on the completion of uricase reaction. These results demonstrated that this kinetic uricase method is reliable for serum uric acid assay with enhanced resistance to both xanthine and other common errors, wider range of linear response and much lower cost.展开更多
The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting p...The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.展开更多
Developing high efficiency and low cost electrocatalysts is critical for the enhancement of oxygen reduction reaction(ORR),which is the fundamental for the development and commercialization of renewable energy convers...Developing high efficiency and low cost electrocatalysts is critical for the enhancement of oxygen reduction reaction(ORR),which is the fundamental for the development and commercialization of renewable energy conversion technology.Herein,zinc-nitrogen-carbon(Zn-N-C)was prepared by using biomass resource chitosan via a facile carbon bath method.The obtained Zn-N-C delivered a high specific surface area(794.7 cm^2/g)together with pore volume(0.49 cm^3/g).During the electrochemical evaluation of oxygen reduction reaction(ORR),Zn-N-C displayed high activity for ORR with an onset pote ntial E0=0.96 VRHE and a half wave potential E1/2=0.86 VRHE,which were more positive than those of the comme rcial 20 wt%Pt/C benchmark catalyst(E0=0.96 VRHE and E1/2=0.81 VRHE).In addition,the ZnN-C catalyst also had a better stability and methanol tolerance than those of the Pt/C catalyst.展开更多
Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some im...Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some improvements to the use of the Hyperstatic Reaction Method-HRM for analysing tunnels with horseshoe-shaped cross-sections when these tunnels operate under the influence of earthquakes, particularly in cases when the tunnel lining is a continuous lining. The analysis used parameters of a tunnel from the Hanoi metro system, as well as parameters of the strongest earthquake that may occur in the central Hanoi area in the improved HRM and 2 D numerical methods using the ABAQUS software. On the basis of the results obtained, the paper gives conclusions about the HRM methodology when it is used to calculate tunnels that have horseshoe cross-sections operating under the influence of earthquakes.展开更多
Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have ...Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions.展开更多
Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum ...Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts.展开更多
Three individual peaks of thermal solid-state reaction processes of the synthesized Mn0.90Co0.05Mg0.05HPO4?3H2O were observed corresponding to dehydration I,dehydration II and polycondensation processes.An alternative...Three individual peaks of thermal solid-state reaction processes of the synthesized Mn0.90Co0.05Mg0.05HPO4?3H2O were observed corresponding to dehydration I,dehydration II and polycondensation processes.An alternative method for the calculation of the extent of conversion was proposed from the peak area of the individual DTG peak after applying the best fitting deconvolution function(Frazer–Suzuki function).An iterative integral isoconversional equation was used to compute the values of the apparent activation energy Eαand they were found to be 65.87,78.16 and 119.32 kJ/mol for three peaks,respectively.Each individual peak was guaranteed to be a single-step kinetic system with its unique kinetic parameters.The reaction mechanism functions were selected by the comparison between experimental and model plots.The results show that the first,second and final individual peaks were two-dimensional diffusion of spherical symmetry(D2),three-dimensional diffusion of spherical symmetry(D3)and contracting cylinder(cylindrical symmetry,R2)mechanisms.Pre-exponential factor values of 3.91×106,1.35×107 and 2.15×107 s?1 were calculated from the Eαvalues and reaction mechanisms.The corresponded standard thermodynamic functions of the transition-state(activated)complexes were determined and found to agree well with the experimental data.展开更多
Phspho-olivine Li Fe PO4 was synthesized from the relatively insoluble lithium source Li2CO3, proper iron and phosphorus sources(n(Li):n(Fe):n(P)=1:1:1) by a novel hydrothermal method. Afterwards, the opti...Phspho-olivine Li Fe PO4 was synthesized from the relatively insoluble lithium source Li2CO3, proper iron and phosphorus sources(n(Li):n(Fe):n(P)=1:1:1) by a novel hydrothermal method. Afterwards, the optimal sample was mixed with glucose and two-step calcinated(500 ℃ and 750 ℃) under high-purity N2 to obtain the Li Fe PO4/C composite. The resultant samples were characterized by X-ray diffraction(XRD), atomic absorption spectrometry(AAS), scanning electron microscops(SEM), transmission electron microscopy(TEM), energy dispersive spectrometry(EDS), elementary analysis(EA) and electrochemical tests. The results show that the optimal reaction condition is to set the reactant concentration at 0.5 mol·L^-1, the reaction temperature at 180 ℃ for 16 h duration. During the reaction course, an intermediate product NH4 Fe PO4·H2O was first synthesized, and then it reacted with Li+ to form Li Fe PO4. The optimized Li Fe PO4 sample with an average particle size(300 to 500 nm) and regular morphology exhibits a relatively high discharge capacity of 84.95 m Ah· g^-1 at the first charge-discharge cycle(0.1C, 1C=170 m A·g^-1). Moreover, the prepared Li Fe PO4/C composite shows a high discharge capacity of 154.3 m Ah·g^-1 at 0.1C and 128.2 m Ah·g^-1 even at 5C. Besides it has good reversibility and stability in CV test.展开更多
The construction of heterojunction photocatalysts for efficiently utilizing solar energy has attracted considerable attention to solve the energy crisis and reduce environmental pollution.In this study,we use the ener...The construction of heterojunction photocatalysts for efficiently utilizing solar energy has attracted considerable attention to solve the energy crisis and reduce environmental pollution.In this study,we use the energy released from an easily-occurred exothermic chemical reaction to serve as the drive force to trigger the formation of Cd S and C_(3)N_(4) nanocomposites which are successfully fabricated with cadmium nitrate and thiourea without addition of any solvents and protection of inert gas at initial temperature,a little higher than the melting point of thiourea.The as-prepared Cd S/C_(3)N_(4) materials exhibit high efficiency for photocatalytic hydrogen evolution reaction(HER)with the HER rate as high as 15,866μmol/(g·hr)under visible light irradiation(λ>420 nm),which is 89 and 9 times those of pristine C_(3)N_(4) and Cd S,respectively.Also,the apparent quantum efficiency(AQE)of Cd S/C_(3)N_(4)–1:2–200–2(Cd S/C_(3)N_(4)–1:2–200–2 means the ratio of Cd to S is 1:2 and the reaction temperature is set at 200℃ for two hours)reaches 3.25%atλ=420±15 nm.After irradiated for more than 24 hr,the HER efficiencies of Cd S/C_(3)N_(4) do not exhibit any attenuation.The DFT calculation suggests that the charge difference causes an internal electric field from C_(3)N_(4) pointing to Cd S,which can more effectively promote the transfer of photogenerated electrons from Cd S to C_(3)N_(4).Therefore,most HER should occur on C_(3)N_(4) surface where photogenerated electrons accumulate,which largely protects Cd S from photo-corrosion.展开更多
Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction metho...Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction method a novel design method is proposed to determine the key design parameters of the COG measurement system.The method can quantitatively analyze the influence of the design parameters on the COG accuracy,in the measurement system designed with supporting reaction method.Using the principle of static balance,the error propagation theory,and the system accuracy analysis method,the equal-range required sensor precision(RSP)surface and non-equal-range required sensor pair precision(RSPP)adapted surface are adopted.The influence of random errors(like sensor accuracy and distance calibration accuracy)is analyzed.The selection strategy of equal-range and non-equal-range sensors is chosen,and then the recommended calibration accuracy values are obtained.For the quality detection accuracy of±0.6 kg and the axial COG detection accuracy of±1.5 mm,the RSP surface is drawn by the proposed method,and the force sensor with±0.23 kg detection accuracy is selected.The experimental verification meets the accuracy requirements and verifies the effectiveness of the proposed design method for the system parameters of the COG measurement equipment.展开更多
Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid r...Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid reactions have led to the development of a variety of different microreactors over the years. Solid particles in microreactors are normally heated by furnaces from outside, resistive elements from inside, direct contact with bed particles, or other non-resistively methods. Solid particles can be fixed or fluidized in reactors where gas-solid contacts vary from diffusion-dominated to nearly diffusion-free conditions. Based on these characteristics, in this article we presented a broad classification for microreactors used for thermal analysis of gas-solid reactions. For each of the most popularly used microreactors, their features and limitations are briefly reviewed. By addressing the diversity of the microreactors used in the field of thermal analysis, the review aims at providing general guidance for the selection and operation of the microreactor to satisfy one's practical specific needs.展开更多
In this study, the activation cross-sections were measured for ^(232)Th(n,2n)^(231)Th reactions at neutron energies of 14.1 and 14.8 MeV, which were produced by a neutron generator through a T(d,n)~4He reaction. Induc...In this study, the activation cross-sections were measured for ^(232)Th(n,2n)^(231)Th reactions at neutron energies of 14.1 and 14.8 MeV, which were produced by a neutron generator through a T(d,n)~4He reaction. Induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. In the cross-section calculations, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of the neutron flux, and low energy neutrons. The measured cross-sections were compared with the literature data, evaluation data(ENDF-B/VII.1, JENDL-4.0 and CENDL-3.1), and the results of the model calculation(TALYS1.6).展开更多
基金funded by the Hanoi University of Mining and Geology(Grant No.T23-44)The research is also funded by the German Research Foundation(DFG e Project number 518862444)in collaboration with the Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number DFG.105e2022.03The third author was funded by the Postdoctoral Scholarship Program of the Vingroup Innovation Foundation(VINIF)(VINIF.2023.STS.15).
文摘The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical loads,an interior column is often installed at the center to enhance its load-bearing capacity.This study aims to develop a hyperstatic reaction method(HRM)for the analysis of deformation and structural integrity in this specific tunnel type.The computational model is validated through comparison with the corresponding finite element method(FEM)analysis.Following comprehensive validation,an ensemble machine learning(ML)model is proposed,using numerical benchmark data,to facilitate real-time design and optimization.Subsequently,three widely used ensemble models,i.e.random forest(RF),gradient boosting decision tree(GBDT),and extreme gradient boosting(XGBoost)are compared to identify the most efficient ML model for replacing the HRM model in the design optimization process.The performance metrics,such as the coefficient of determination R2 of about 0.999 and the mean absolute percentage error(MAPE)of about 1%,indicate that XGBoost outperforms the others,exhibiting excellent agreement with the HRM analysis.Additionally,the model demonstrates high computational efficiency,with prediction times measured in seconds.Finally,the HRM-XGBoost model is integrated with the well-known particle swarm optimization(PSO)for the real-time design optimization of quasi-rectangular tunnels,both with and without the interior column.A feature importance assessment is conducted to evaluate the sensitivity of design input features,enabling the selection of the most critical features for the optimization task.
基金supported by Beijing Natural Science Foundation (8164063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050100)~~
文摘Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.
基金Projects(51774070,51204054)supported by the National Natural Science Foundation of ChinaProject(N150204009)supported by the Ministry of Education Basic Scientific Research Business Expenses,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.
文摘Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-like to large block with the increase of Al3Ti content. The addition of magnesium can markedly change the morphology of Al3Ti and reduce their size. Short rod-like Al3Ti was formed and homogeneous distribution was obtained with the addition of 3 wt.% Mg. The effect of Al3Ti and Mg on the microstructure of Al-Al3Ti composites and the mechanism were also discussed.
基金Supported by the National Natural Sciences Foundation of China(40676016 and 10471039)the National Key Project for Basic Research(2003CB415101-03 and 2004CB418304)+2 种基金the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission(N.E03004)the Natural Science Foundation of Zeijiang,China(Y606268).
文摘In this article the travelling wave solution for a class of nonlinear reaction diffusion problems are considered. Using the homotopic method and the theory of travelling wave transform, the approximate solution for the corresponding problem is obtained.
文摘Objective:To investigate the reliability for kinetic assay of substance with background predicted by the integrated method using uricase reaction as model. Methods: Absorbance before uricase action (Δ0) was estimated by extrapolation with given lag time of steady-state reaction. With Km fixed at 12.5μmol/L, background absorbance (Δb) was predicted by nonlinearly fitting integrated Michaelis-Menten equation to Candida utilis uricase reaction curve. Uric acid in reaction solution was determined by the difference (ΔA) between Δ0 and Δb. Results .Ab usually showed deviation 〈3% from direct assay with residual substrate done fifth of initial substrate for analysis. ΔA showed CV 〈5% with resistance to common interferences except xanthine, and it linearly responded to uric acid with slope consistent to the absorptivity of uric acid. The lower limit was 2.0 μmol/L and upper limit reached 30 μmol/L in reaction solution with data monitored within 8 min reaction at 0. 015 U/ml uricase. Preliminary application to serum and urine gave better precision than the direct equilibrium method without the removal of proteins before analysis. Conclusion .This kinetic method with background predicted by the integrated method was reliable for enzymatic analysis, and it showed resistance to common interferences and enhanced efficiency at much lower cost.
基金supported by the National Key Technology R&D Program (Nos. 2012BAC02B01, 2012BAC12B05, 2011BAE13B07, and 2011BAC10B02)the National High Technology Research and Development Program of China (No. 2012AA063202)+2 种基金the National Natural Science Foundation of China (Nos. 51174247 and 51004011)the Science and Technology Program of Guangdong Province, China (No. 2010A030200003)the Ph.D. Programs Foundation of the Ministry of Education of China (No. 2010000612003)
文摘Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study, using oily CRM sludge as sources of iron oxide, the strontium ferrite powders were synthesized in multiple steps including vacuum distillation, magnetic separation, oxidizing roasting, and solidstate reaction. The optimal technological conditions of vacuum distillation and oxidizing roasting were studied carefully. To consider the effects of Fe203/ SrCO3 tool ratio, calcination temperature, milling time and calcination time on magnetic properties of prepared strontium ferrite powders, the orthogonal experimental method was adopted. The maximum saturation magneti- zation (62.6 mA-m2.g-1) of the synthesized strontium ferrite powders was achieved at the Fe203/SrCO3 mol ratio of 6, 5 h milling time, 1250 ~C calcination temperature, and 1 h calcination time. Strontium ferrite powders syn- thesis method not only provides a cheap, high quality raw material for the production of strontium ferrite powders, but also effectively prevents the environmental pollution.
基金Project (No. 30200266) supported by the National Natural Science Foundation of China
文摘A patented kinetic uricase method was evaluated for serum uric acid assay. Initial absorbance of the reaction mixture before uricase action (A0) was obtained by correcting the absorbance at 293 nm measured before the addition of uricase solution, and background absorbance (Ab) was predicted by an integrated method. Uric acid concentration in reaction solution was calculated from AA, the difference between A0 and Ab, using the absorptivity preset for uric acid. This kinetic uricase method exhibited CV〈4.3% and recovery of 100%. Lipids, bilirubin, hemoglobin, ascorbic acid, reduced glutathione and xanthine 〈0.32 mmol/L in serum had no significant effects. △A linearly responded to 1.2 to 37.5 μmol/L uric acid in reaction solution containing 15 μl serum. The slope of linear response was consistent with the absorptivity preset for uric acid while the intercept was consistent with that for serum alone. Uric acid concentrations in clinic sera by different uricase methods positively correlated to each other. By Bland-Altman analysis, this kinetic uricase method accorded with that by quantifying the total change of UV absorbance on the completion of uricase reaction. These results demonstrated that this kinetic uricase method is reliable for serum uric acid assay with enhanced resistance to both xanthine and other common errors, wider range of linear response and much lower cost.
基金supported by the National Natural Science Foundation of China(Nos.52174277 and 51874077)the Fundamental Funds for the Central Universities,China(No.N2225032)+1 种基金the China Postdoctoral Science Foundation(No.2022M720683)the Postdoctoral Fund of Northeastern University,China。
文摘The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.
基金supported by the National Natural Science Foundation of China(No.21865025)。
文摘Developing high efficiency and low cost electrocatalysts is critical for the enhancement of oxygen reduction reaction(ORR),which is the fundamental for the development and commercialization of renewable energy conversion technology.Herein,zinc-nitrogen-carbon(Zn-N-C)was prepared by using biomass resource chitosan via a facile carbon bath method.The obtained Zn-N-C delivered a high specific surface area(794.7 cm^2/g)together with pore volume(0.49 cm^3/g).During the electrochemical evaluation of oxygen reduction reaction(ORR),Zn-N-C displayed high activity for ORR with an onset pote ntial E0=0.96 VRHE and a half wave potential E1/2=0.86 VRHE,which were more positive than those of the comme rcial 20 wt%Pt/C benchmark catalyst(E0=0.96 VRHE and E1/2=0.81 VRHE).In addition,the ZnN-C catalyst also had a better stability and methanol tolerance than those of the Pt/C catalyst.
基金supported by the Saint Petersburg Mining University
文摘Tunnels are now an integral part of the infrastructure in major cities around the world. For many reasons, these tunnels have horseshoe-shaped cross-sections with round top and flat bottom. This paper presents some improvements to the use of the Hyperstatic Reaction Method-HRM for analysing tunnels with horseshoe-shaped cross-sections when these tunnels operate under the influence of earthquakes, particularly in cases when the tunnel lining is a continuous lining. The analysis used parameters of a tunnel from the Hanoi metro system, as well as parameters of the strongest earthquake that may occur in the central Hanoi area in the improved HRM and 2 D numerical methods using the ABAQUS software. On the basis of the results obtained, the paper gives conclusions about the HRM methodology when it is used to calculate tunnels that have horseshoe cross-sections operating under the influence of earthquakes.
基金supported by the National Natural Science Foundation of China (Nos. 21822407 and 22074154)Youth Innovation Promotion Association CAS (2021420)the Foundation for Sci & Tech Research Project of Gansu Province (20JR10RA045 and 20JR5RA573)。
文摘Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions.
基金the financial support of the 100-Talent Program of Chinese Academy of Sciences
文摘Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts.
基金supported by King Mongkut’s Institute of Technology Ladkrabang [KREF146001]
文摘Three individual peaks of thermal solid-state reaction processes of the synthesized Mn0.90Co0.05Mg0.05HPO4?3H2O were observed corresponding to dehydration I,dehydration II and polycondensation processes.An alternative method for the calculation of the extent of conversion was proposed from the peak area of the individual DTG peak after applying the best fitting deconvolution function(Frazer–Suzuki function).An iterative integral isoconversional equation was used to compute the values of the apparent activation energy Eαand they were found to be 65.87,78.16 and 119.32 kJ/mol for three peaks,respectively.Each individual peak was guaranteed to be a single-step kinetic system with its unique kinetic parameters.The reaction mechanism functions were selected by the comparison between experimental and model plots.The results show that the first,second and final individual peaks were two-dimensional diffusion of spherical symmetry(D2),three-dimensional diffusion of spherical symmetry(D3)and contracting cylinder(cylindrical symmetry,R2)mechanisms.Pre-exponential factor values of 3.91×106,1.35×107 and 2.15×107 s?1 were calculated from the Eαvalues and reaction mechanisms.The corresponded standard thermodynamic functions of the transition-state(activated)complexes were determined and found to agree well with the experimental data.
基金Funded by the National Natural Science Foundation of China(No.51004074)
文摘Phspho-olivine Li Fe PO4 was synthesized from the relatively insoluble lithium source Li2CO3, proper iron and phosphorus sources(n(Li):n(Fe):n(P)=1:1:1) by a novel hydrothermal method. Afterwards, the optimal sample was mixed with glucose and two-step calcinated(500 ℃ and 750 ℃) under high-purity N2 to obtain the Li Fe PO4/C composite. The resultant samples were characterized by X-ray diffraction(XRD), atomic absorption spectrometry(AAS), scanning electron microscops(SEM), transmission electron microscopy(TEM), energy dispersive spectrometry(EDS), elementary analysis(EA) and electrochemical tests. The results show that the optimal reaction condition is to set the reactant concentration at 0.5 mol·L^-1, the reaction temperature at 180 ℃ for 16 h duration. During the reaction course, an intermediate product NH4 Fe PO4·H2O was first synthesized, and then it reacted with Li+ to form Li Fe PO4. The optimized Li Fe PO4 sample with an average particle size(300 to 500 nm) and regular morphology exhibits a relatively high discharge capacity of 84.95 m Ah· g^-1 at the first charge-discharge cycle(0.1C, 1C=170 m A·g^-1). Moreover, the prepared Li Fe PO4/C composite shows a high discharge capacity of 154.3 m Ah·g^-1 at 0.1C and 128.2 m Ah·g^-1 even at 5C. Besides it has good reversibility and stability in CV test.
基金supported by National Key Research and Development Program of China(No.2016YFA0203100)the National Natural Science Foundation of China(Nos.21537004,21777169,and 21621064)the Beijing Municipal Natural Science Foundation(No.8202046)。
文摘The construction of heterojunction photocatalysts for efficiently utilizing solar energy has attracted considerable attention to solve the energy crisis and reduce environmental pollution.In this study,we use the energy released from an easily-occurred exothermic chemical reaction to serve as the drive force to trigger the formation of Cd S and C_(3)N_(4) nanocomposites which are successfully fabricated with cadmium nitrate and thiourea without addition of any solvents and protection of inert gas at initial temperature,a little higher than the melting point of thiourea.The as-prepared Cd S/C_(3)N_(4) materials exhibit high efficiency for photocatalytic hydrogen evolution reaction(HER)with the HER rate as high as 15,866μmol/(g·hr)under visible light irradiation(λ>420 nm),which is 89 and 9 times those of pristine C_(3)N_(4) and Cd S,respectively.Also,the apparent quantum efficiency(AQE)of Cd S/C_(3)N_(4)–1:2–200–2(Cd S/C_(3)N_(4)–1:2–200–2 means the ratio of Cd to S is 1:2 and the reaction temperature is set at 200℃ for two hours)reaches 3.25%atλ=420±15 nm.After irradiated for more than 24 hr,the HER efficiencies of Cd S/C_(3)N_(4) do not exhibit any attenuation.The DFT calculation suggests that the charge difference causes an internal electric field from C_(3)N_(4) pointing to Cd S,which can more effectively promote the transfer of photogenerated electrons from Cd S to C_(3)N_(4).Therefore,most HER should occur on C_(3)N_(4) surface where photogenerated electrons accumulate,which largely protects Cd S from photo-corrosion.
基金Supported by National Key Research and Development Program of China(2018YFB1306300)。
文摘Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction method a novel design method is proposed to determine the key design parameters of the COG measurement system.The method can quantitatively analyze the influence of the design parameters on the COG accuracy,in the measurement system designed with supporting reaction method.Using the principle of static balance,the error propagation theory,and the system accuracy analysis method,the equal-range required sensor precision(RSP)surface and non-equal-range required sensor pair precision(RSPP)adapted surface are adopted.The influence of random errors(like sensor accuracy and distance calibration accuracy)is analyzed.The selection strategy of equal-range and non-equal-range sensors is chosen,and then the recommended calibration accuracy values are obtained.For the quality detection accuracy of±0.6 kg and the axial COG detection accuracy of±1.5 mm,the RSP surface is drawn by the proposed method,and the force sensor with±0.23 kg detection accuracy is selected.The experimental verification meets the accuracy requirements and verifies the effectiveness of the proposed design method for the system parameters of the COG measurement equipment.
基金supported by both the National Natural Science Foundation of China(U1903130 and U1908201)the Ministry of Science and Technology of the People's Republic of China(2020YFC1909300).
文摘Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid reactions have led to the development of a variety of different microreactors over the years. Solid particles in microreactors are normally heated by furnaces from outside, resistive elements from inside, direct contact with bed particles, or other non-resistively methods. Solid particles can be fixed or fluidized in reactors where gas-solid contacts vary from diffusion-dominated to nearly diffusion-free conditions. Based on these characteristics, in this article we presented a broad classification for microreactors used for thermal analysis of gas-solid reactions. For each of the most popularly used microreactors, their features and limitations are briefly reviewed. By addressing the diversity of the microreactors used in the field of thermal analysis, the review aims at providing general guidance for the selection and operation of the microreactor to satisfy one's practical specific needs.
基金Supported by National Natural Science Foundation of China(No.11205076)
文摘In this study, the activation cross-sections were measured for ^(232)Th(n,2n)^(231)Th reactions at neutron energies of 14.1 and 14.8 MeV, which were produced by a neutron generator through a T(d,n)~4He reaction. Induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. In the cross-section calculations, corrections were made regarding the effects of gamma-ray attenuation, dead-time, fluctuation of the neutron flux, and low energy neutrons. The measured cross-sections were compared with the literature data, evaluation data(ENDF-B/VII.1, JENDL-4.0 and CENDL-3.1), and the results of the model calculation(TALYS1.6).