期刊文献+
共找到1,694篇文章
< 1 2 85 >
每页显示 20 50 100
Predict Aerodynamic Drag of Spacecraft in Very Low Earth Orbit Using Different Gas-Surface Interaction Models 被引量:2
1
作者 JIN Xuhong CHENG Xiaoli +1 位作者 WANG Bing HUANG Fei 《Aerospace China》 2021年第4期35-41,共7页
The accurate prediction for aerodynamic drag of spacecraft in very low Earth orbit(VLEO) is a fundamental prerequisite for aerospace missions in VLEO. The present work calculates aerodynamic drag of the Gravity Field ... The accurate prediction for aerodynamic drag of spacecraft in very low Earth orbit(VLEO) is a fundamental prerequisite for aerospace missions in VLEO. The present work calculates aerodynamic drag of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE) satellite using the test particle Monte Carlo(TPMC) method. The primary goal is to obtain a comprehensive understanding of surface pressure and skin friction on the spacecraft surface and assess the sensitivity of aerodynamic drag to the gas-surface interaction(GSI) models. Results indicate that surface pressure is mainly distributed on the front of the satellite body and panels while skin friction is primarily distributed on the sides. In addition, as the GSI model changes from diffuse to specular reflection, the total drag coefficient is reduced at operation altitudes above 170 km. Therefore, the satellite surface should be processed so carefully that the GSI remains far from diffuse reflection from the view point of the drag-reduce design. 展开更多
关键词 satellite drag gas-surface interaction surface pressure skin friction free-molecular aerodynamics
在线阅读 下载PDF
Interaction between a Liquid Surface and an Impinging Gas Jet
2
作者 Miguel A. Barron Dulce Y. Medina Joan Reyes 《World Journal of Engineering and Technology》 2021年第4期793-803,共11页
The water-air and Wood’s metal-air systems are modeled by means of Computational Fluid Dynamics to study the interaction between a liquid surface and an impinging air jet under the near field blowing conditions. The ... The water-air and Wood’s metal-air systems are modeled by means of Computational Fluid Dynamics to study the interaction between a liquid surface and an impinging air jet under the near field blowing conditions. The effect of the air jet velocity, the height of the injection lance, and the density of the liquid on the depth of the formed cavity is numerically studied. The CFD results of the cavity depth are compared with results previously reported by other authors. The emergence of the splashing phenomenon is predicted in terms of the critical velocity for each liquid-air system. Besides, the blowing number indicates that the drop generation rate is not significant for jet velocities below the critical velocity, and therefore neither the splashing is significant. 展开更多
关键词 Cavity Depth CFD Impinging gas Jet Lance Height Liquid-gas interaction SPLASHING
在线阅读 下载PDF
Experimental Studies of Interactions Between Backfires and Coming Surface Fires\+*
3
作者 崔文彬 乔启宇 《Forestry Studies in China》 CAS 2002年第1期25-28,共4页
In order to study the convection limits of surface fires and interactions between backfires and main fires,several experiments are conducted in a large space indoor laboratory: in which the effects of ambient wind spe... In order to study the convection limits of surface fires and interactions between backfires and main fires,several experiments are conducted in a large space indoor laboratory: in which the effects of ambient wind speeds and changing temperatures can be avoided.The research shows that:(1) there is a convection field in front of coming fires in which the wind speed direction is toward the fire.In the convection area,the lower part has higher wind speed and when the height is taller than a certain value the convection wind speed is not significant;(2) the backfire and the main fire interact with each other even though they are far apart.When they come near each other to a certain distance,they begin to draw each other.This increases their rates of spread toward each other significantly.For surface fires with a fire line intensity of 160?kW\5m -1 ,their rate of spread increases by 27%. 展开更多
关键词 firest fire surface fire BACKFIRE interaction wind speed field
在线阅读 下载PDF
Synergistic exploitation of gas hydrates through surface seawater injection coupled with depressurization:Application and optimization in the South China Sea 被引量:1
4
作者 Yuxuan Li Zhaobin Zhang +6 位作者 Rick Chalaturnyk Shouding Li Jianming He Hang Bian Xiao Li Cheng Lu Xuwen Qin 《International Journal of Mining Science and Technology》 2025年第11期1921-1937,共17页
This study proposes and systematically evaluates an optimized integration of warm surface seawater injection with depressurization for the long-term exploitation of marine natural gas hydrates.By employing comprehensi... This study proposes and systematically evaluates an optimized integration of warm surface seawater injection with depressurization for the long-term exploitation of marine natural gas hydrates.By employing comprehensive multiphysics simulations guided by field data from hydrate production tests in the South China Sea,we pinpoint key operational parameters—such as injection rates,depths,and timings—that notably enhance production efficiency.The results indicate that a 3-phase hydrate reservoir transitions from a free-gas-dominated production stage to a hydrate-decomposition-dominated stage.Moderate warm seawater injection supplies additional heat during the hydrate decomposition phase,thereby enhancing stable production;however,excessively high injection rates can impede the depressurization process.Only injection at an appropriate depth simultaneously balances thermal supplementation and the pressure gradient,leading to higher overall productivity.A“depressurization-driven sensible-heat supply window”is introduced,highlighting that timely seawater injection following initial depressurization prolongs reservoir dissociation dynamics.In this study area,commencing seawater injection at 170 d of depressurization proved optimal.This optimized integration leverages clean and renewable thermal energy,providing essential insights into thermal supplementation strategies with significant implications for sustainable,economically feasible,and efficient commercial-scale hydrate production. 展开更多
关键词 Natural gas hydrates surface seawater injection Multiphysics simulations Thermal supplementation Sensible-heat supply window
在线阅读 下载PDF
Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land–Air–Sea Interaction Perspective 被引量:18
5
作者 Anmin DUAN Ruizao SUN Jinhai HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期157-168,共12页
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th... The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework. 展开更多
关键词 Tibetan Plateau surface sensible heating western Pacific subtropical high ENSO tropical air-sea interaction
在线阅读 下载PDF
Density distribution of ground state of one-dimensional Bose gas with dipole interaction
6
作者 Shuchang Hao Yajiang Hao 《Chinese Physics B》 2025年第3期245-249,共5页
Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground s... Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels. 展开更多
关键词 Bose gas ONE-DIMENSIONAL dipole interaction
原文传递
Global greenhouse gas emissions in the 21st century:Complex network,driver pattern and economy-based interaction
7
作者 Chong Xu Yuchen Gao Min Lv 《Chinese Journal of Population,Resources and Environment》 2025年第2期153-167,共15页
Achieving a reduction in global greenhouse gas(GHG)emissions requires collaborative efforts from the international community;however,a comprehensive understanding of the spatiotemporal characteristics(i.e.,complex emi... Achieving a reduction in global greenhouse gas(GHG)emissions requires collaborative efforts from the international community;however,a comprehensive understanding of the spatiotemporal characteristics(i.e.,complex emission networks and driver patterns)and the mutual influence of gross domestic product(GDP)and GHG emissions remains limited at a global level in the 21st century,which is not conducive to forming a consensus in global climate change negotiations and formulating relevant policies.To fill these gaps,this study comprehensively analyzes the complex network and driver pattern of GHG emissions,as well as the corresponding mutual influence with GDP for 185 countries during 2000-2021,based on social network analysis,the logarithmic Divisia decomposition approach,and panel vector autoregression model at global and regional levels.The results indicate that significant heterogeneity and inequality exist in terms of GHG emissions among regions and countries in different geographical areas and economic income levels.Additionally,GDP per capita and GHG emission intensity are the largest positive and negative drivers,respectively,affecting the increase in global GHG emissions.Furthermore,key countries,such as Germany and Canada,that could serve as coordinating bridges to strengthen collaboration in the global emission network are identified.This study highlights the need to encourage key participants in the emission network and foster international cooperation in governance,energy technology,and economic investment to address climate change. 展开更多
关键词 Greenhouse gas emissions Network analysis Driving forces Socioeconomic interactions
在线阅读 下载PDF
Origin of two-dimensional hole gas at the hydrogen-terminated diamond surfaces:Negative interface valence-induced upward band bending
8
作者 Qingzhong Gui Wei Yu +9 位作者 Chunmin Cheng Hailing Guo Xiaoming Zha Ruyue Cao Hongxia Zhong John Robertson Sheng Liu Zhaofu Zhang Zhuo Jiang Yuzheng Guo 《Journal of Materials Science & Technology》 2025年第4期76-85,共10页
The surface transfer doping model has been extensively adopted as a mechanism to account for the generation of hole accumulation layers below hydrogen-terminated diamond(H-diamond)surfaces.To achieve effective surface... The surface transfer doping model has been extensively adopted as a mechanism to account for the generation of hole accumulation layers below hydrogen-terminated diamond(H-diamond)surfaces.To achieve effective surface transfer doping,surface electron acceptor materials with high electron affinity(EA)are required to produce a high density of two-dimensional hole gas(2DHG)on the H-diamond subsurface.We have established ingenious theoretical models to demonstrate that even if these solid materials do not have a high EA value,they remain capable of absorbing electrons from the H-diamond surface by forming a negatively charged interface to act as a surface electron acceptor in the surface transfer doping model.Our calculations,particularly for the local density of states,provide compelling evidence that the effect of an interface with negative charges induces an upward band bending on the H-diamond side.Furthermore,the valence band maximum of the diamond atoms at the interface crosses the Fermi level,giving rise to strong surface transfer p-type doping.These results give a strong theoretical interpretation of the origin of 2DHG on H-diamond surfaces.The proposed guidelines contribute to further improvements in the performance of 2DHG H-diamond field effect transistors. 展开更多
关键词 Hydrogen-terminated diamond surface transfer doping Two-dimensional hole gas First-principles calculations
原文传递
Hybrid genetic algorithm for parametric optimization of surface pipeline networks in underground natural gas storage harmonized injection and production conditions
9
作者 Jun Zhou Zichen Li +4 位作者 Shitao Liu Chengyu Li Yunxiang Zhao Zonghang Zhou Guangchuan Liang 《Natural Gas Industry B》 2025年第2期234-250,共17页
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject... The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS. 展开更多
关键词 Underground natural gas storage surface injection and production pipeline Parameter optimization Hybrid genetic algorithm
在线阅读 下载PDF
Intermolecular and Surface Interactions in Engineering Processes 被引量:9
10
作者 Jiawen Zhang Hongbo Zeng 《Engineering》 SCIE EI 2021年第1期63-83,共21页
Interactions involving chemical reagents,solid particles,gas bubbles,liquid droplets,and solid surfaces in complex fluids play a vital role in many engineering processes,such as froth flotation,emulsion and foam forma... Interactions involving chemical reagents,solid particles,gas bubbles,liquid droplets,and solid surfaces in complex fluids play a vital role in many engineering processes,such as froth flotation,emulsion and foam formation,adsorption,and fouling and anti-fouling phenomena.These interactions at the molecular,nano-,and micro scale significantly influence and determine the macroscopic performance and efficiency of related engineering processes.Understanding the intermolecular and surface interactions in engineering processes is of both fundamental and practical importance,which not only improves production technologies,but also provides valuable insights into the development of new materials.In this review,the typical intermolecular and surface interactions involved in various engineering processes,including Derjaguin–Landau–Verwey–Overbeek(DLVO)interactions(i.e.,van der Waals and electrical doublelayer interactions)and non-DLVO interactions,such as steric and hydrophobic interactions,are first introduced.Nanomechanical techniques such as atomic force microscopy and surface forces apparatus for quantifying the interaction forces of molecules and surfaces in complex fluids are briefly introduced.Our recent progress on characterizing the intermolecular and surface interactions in several engineering systems are reviewed,including mineral flotation,petroleum engineering,wastewater treatment,and energy storage materials.The correlation of these fundamental interaction mechanisms with practical applications in resolving engineering challenges and the perspectives of the research field have also been discussed. 展开更多
关键词 Intermolecular and surface interactions COLLOIDS Emulsions Interface science Engineering processes Atomic force microscopy surface forces apparatus
在线阅读 下载PDF
Progressive Failure Evaluation of Composite Skin-Stiffener Joints Using Node to Surface Interactions and CZM 被引量:5
11
作者 A.Sane P.M.Padole R.V.Uddanwadiker 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第5期281-294,共14页
T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions ... T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment. 展开更多
关键词 Carbon fiber composite FE analysis T-JOINT COHESIVE zone modeling NODE to surface interactions
在线阅读 下载PDF
Hydration film measurement on mica and coal surfaces using atomic force microscopy and interfacial interactions 被引量:4
12
作者 XING Yao-wen GUI Xia-hui CAO Yi-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1295-1305,共11页
The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces... The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m. 展开更多
关键词 hydration film atomic force microscope surface energy interfacial interaction
在线阅读 下载PDF
Position-dependent property of resonant dipole-dipole interaction mediated by localized surface plasmon of an Ag nanosphere 被引量:2
13
作者 许丹 王小云 +3 位作者 黄勇刚 欧阳仕粮 何海龙 何浩 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期158-164,共7页
We use the photon Green-function method to study the quantum resonant dipole-dipole interaction(RDDI) induced by an Ag nanosphere(ANP).As the distance between the two dipoles increases,the RDDI becomes weaker,whic... We use the photon Green-function method to study the quantum resonant dipole-dipole interaction(RDDI) induced by an Ag nanosphere(ANP).As the distance between the two dipoles increases,the RDDI becomes weaker,which is accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode.Across a broad frequency range(above 0.05 eV),the transfer rate of the RDDI is nearly constant since the two dipoles are fixed at the proper position.In addition,this phenomenon still exists for slightly different radius of the ANPs.We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole as the other dipole and the ANP are kept fixed.In addition,the radius of ANP has little effect on this.When the two dipoles are far from the ANP,the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode.In contrast,when the two dipoles are close to the ANP,the higher-order modes come into effect and they will play a leading role in the RDDI if they match the transition frequency of the dipole.Our results may be used in a biological detector and have a certain guiding significance for further application. 展开更多
关键词 quantum resonant dipole-dipole interaction photonic Green function surface plasmon
原文传递
STUDY ON INTERACTION ENERGY BETWEEN FLOTATION REAGENT AND MINERAL SURFACE 被引量:1
14
作者 Chen Jianhua Feng Qiming Lu Yiping Chen Jin (Department of Mineral Engineering, Central South University of Technology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1998年第2期35-39,共5页
The interaction between a flotation reagent and mineral surface not only depends on the bonding atom, but also depends on the adjacent atom of mineral surface, a flotation reagent and the medium in the system of flota... The interaction between a flotation reagent and mineral surface not only depends on the bonding atom, but also depends on the adjacent atom of mineral surface, a flotation reagent and the medium in the system of flotation. Energy equation of a reagent interacting with mineral surface has been deduced from this model. Results of the studies indicate that the interaction energy between mineral surface and a reagent is about several dozen kJ/mol, and the relationship between adsorbing concentration of xanthate on mineral surface and interaction energy is the exponent form. 展开更多
关键词 FLOTATION REAGENT MINERAL surface interaction
在线阅读 下载PDF
Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region,North China Plain 被引量:7
15
作者 Bentje Brauns Poul L.Bjerg +1 位作者 Xianfang Song Rasmus Jakobsen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期60-75,共16页
Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. I... Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to:(a) understand pollutant exchange between surface water and groundwater,(b) quantify nutrient loadings, and(c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat(Triticum aestivum L.) and maize(Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River(up to 29.8 mg/L NH4-N and 6.8 mg/L NO3-N), as well as nitrate via vertical transport from the field surface(up to 134.8 mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320 kg/ha/a. Nevertheless,both nitrogen species were only detected at low concentrations in shallow groundwater,averaging at 3.6 mg/L NH4-N and 1.8 mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered. 展开更多
关键词 Groundwater pollution North China Plain surface water–groundwater interaction Wheat–maize double cropping Nitrogen Anammox
原文传递
Mechanical behaviors of interaction between coral sand and structure surface 被引量:2
16
作者 FENG Ze-kang XU Wen-jie MENG Qing-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3436-3449,共14页
Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyz... Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization. 展开更多
关键词 coral sand direct shear test interaction surface particle morphology
在线阅读 下载PDF
Nonlinear primary resonance analysis of nanoshells including vibrational mode interactions based on the surface elasticity theory 被引量:1
17
作者 A.SARAFRAZ S.SAHMANI M.M.AGHDAM 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第2期233-260,共28页
The deviation from the classical elastic characteristics induced by the free surface energy can be considerable for nanostructures due to the high surface to volume ratio. Consequently, this type of size dependency sh... The deviation from the classical elastic characteristics induced by the free surface energy can be considerable for nanostructures due to the high surface to volume ratio. Consequently, this type of size dependency should be accounted for in the mechanical behaviors of nanoscale structures. In the current investigation, the influence of free surface energy on the nonlinear primary resonance of silicon nanoshells under soft harmonic external excitation is studied. In order to obtain more accurate results,the interaction between the first, third, and fifth symmetric vibration modes with the main oscillation mode is taken into consideration. Through the implementation of the Gurtin-Murdoch theory of elasticity into the classical shell theory, a size-dependent shell model is developed incorporating the effect of surface free energy. With the aid of the variational approach, the governing differential equations of motion including both of the cubic and quadratic nonlinearities are derived. Thereafter, the multi-time-scale method is used to achieve an analytical solution for the nonlinear size-dependent problem. The frequency-response and amplitude-response of the soft harmonic excited nanoshells are presented corresponding to different values of shell thickness and surface elastic constants as well as various vibration mode interactions. It is depicted that through consideration of the interaction between the higher symmetric vibration modes and the main oscillation mode, the hardening response of nanoshell changes to the softening one. This pattern is observed corresponding to both of the positive and negative values of the surface elastic constants and the surface residual stress. 展开更多
关键词 NANOSTRUCTURE NONLINEAR dynamics surface stress mode interaction multi-time-scale method
在线阅读 下载PDF
Determination of Slip Length in Couette Flow Based on an Analytical Simulation Incorporating Surface Interaction 被引量:1
18
作者 赵欣 魏超 苑士华 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第3期77-81,共5页
An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account o... An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account of the micro-force between molecules and macro-force from the viscous shearing effect, as they contribute to the achieve- ment of the slip length. The calculated results are compared with those obtained from the molecular dynamics simulation, showing an excellent agreement. Further, the effect of the shear rate on the slip is investigated. The results can well predict the fluid flow behaviors on a solid substrate, but has to be proved by experiment. 展开更多
关键词 MD Determination of Slip Length in Couette Flow Based on an Analytical Simulation Incorporating surface interaction
原文传递
Numerical and Experimental Investigation of Interactions Between Free-Surface Waves and A Floating Breakwater with Cylindrical-Dual/Rectangular-Single Pontoon 被引量:11
19
作者 JI Chun-yan YANG Ke +1 位作者 CHENG Yong YUAN Zhi-ming 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期388-399,共12页
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on... This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics(CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom(3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step.The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes(sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model. 展开更多
关键词 free-surface floating breakwater three DOF Navier Stokes solver wave structure interaction dynamic full-structured mesh
在线阅读 下载PDF
Coupling interaction between a single emitter and the propagating surface plasmon polaritons in a graphene microribbon waveguide
20
作者 张磊 符秀丽 +4 位作者 雷鸣 陈建军 杨俊忠 彭志坚 唐为华 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期555-559,共5页
The coupling interaction between an individual optical emitter and the propagating surface plasmon polaritons in a graphene microribbon (GMR) waveguide is investigated by numerical calculations, where the emitter is... The coupling interaction between an individual optical emitter and the propagating surface plasmon polaritons in a graphene microribbon (GMR) waveguide is investigated by numerical calculations, where the emitter is situated above the GMR or in the same plane of the GMR, The results reveal a multimode coupling mechanism for the strong interaction between the emitter and the propagating plasmonic waves in graphene. When the emitter is situated in the same plane of the GMR, the decay rate from the emitter to the surface plasmon polaritons increases more than 10 times compared with that in the case with the emitter above the GMR. 展开更多
关键词 GRAPHENE coupling interaction surface plasmon polariton
原文传递
上一页 1 2 85 下一页 到第
使用帮助 返回顶部