Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applicatio...Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.展开更多
With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been...With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors.However,it is limited by high operating temperature.The current research works are directed towards fabricating high-performance flexible room-temperature(FRT)gas sensors,which are effective in simplifying the structure of MOS-based sensors,reducing power consumption,and expanding the application of portable devices.This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism,performance,flexibility characteristics,and applications.This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors,including pristine MOS,noble metal nanoparticles modified MOS,organic polymers modified MOS,carbon-based materials(carbon nanotubes and graphene derivatives)modified MOS,and two-dimensional transition metal dichalcogenides materials modified MOS.The effect of light-illuminated to improve gas sensing performance is further discussed.Furthermore,the applications and future perspectives of FRT gas sensors are also discussed.展开更多
Ammonia detection possesses great potential in atmosphere environmental protection,agriculture,industry,and rapid medical diagnosis.However,it still remains a great challenge to balance the sensitivity,selectivity,wor...Ammonia detection possesses great potential in atmosphere environmental protection,agriculture,industry,and rapid medical diagnosis.However,it still remains a great challenge to balance the sensitivity,selectivity,working temperature,and response/recovery speed.In this work,Berlin green(BG)framework is demonstrated as a highly promising sensing material for ammonia detection by both density functional theory simulation and experimental gas sensing investigation.Vacancy in BG framework offers abundant active sites for ammonia absorption,and the absorbed ammonia transfers sufficient electron to BG,arousing remarkable enhancement of resistance.Pristine BG framework shows remarkable response to ammonia at 50–110°C with the highest response at 80°C,which is jointly influenced by ammonia’s absorption onto BG surface and insertion into BG lattice.The sensing performance of BG can hardly be achieved at room temperature due to its high resistance.Introduction of conductive Ti3CN MXene overcomes the high resistance of pure BG framework,and the simply prepared BG/Ti3CN mixture shows high selectivity to ammonia at room temperature with satisfying response/recovery speed.展开更多
Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,...Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,the nanocomposite combining SnO-SnO_(2)(p-n junction)and Ti_(3)C_(2)T_(x) MXene was successfully synthesized by a one-step hydrothermal method.Because of the existence of a small amount of oxygen during the hydrothermal conditions,part of the p-type SnO was oxidized to n-type SnO_(2),forming in-situ p-n junctions on the surface of Sn O.The hamburger-like SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensor exhibited improved acetone gas sensing response of 12.1(R_(g)/R_(a))at room temperature,which were nearly 11 and 4 times higher than those of pristine Ti_(3)C_(2)T_(x) and pristine SnO-SnO_(2),respectively.Moreover,it expressed a short recovery time(9 s)and outstanding reproducibility.Because of the different work functions,the Schottky barrier was formed between the SnO and the Ti_(3)C_(2)T_(x) nanosheets,acting as a hole accumulation layer(HALs)between Ti_(3)C_(2)T_(x) and tin oxides.Herein,the sensing mechanism based on the formation of hetero-junctions and high conductivity of the metallic phase of Ti_(3)C_(2)T_(x) MXene in SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensors was discussed in detail.展开更多
In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The exper...In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The experimental results show that the gas sensor has good repeatability,high response rate,short response,and recovery time at room temperature(25℃).The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%,with a response time and recovery time are 0.3 s and 0.7 s respectively.As a contrast,the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate.Therefore,ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics,which provides a feasible method of developing the high performance ZnO-based gas sensor.展开更多
The sensitivity and selectivity of gas sensors are related with not only sensing material,but also their operating temperatures.Applying this property,temperature modulation technique has been proposed to improve the ...The sensitivity and selectivity of gas sensors are related with not only sensing material,but also their operating temperatures.Applying this property,temperature modulation technique has been proposed to improve the selectivity of gas sensors.With a newly developed alumina based micro gas sensor,the sensitivity to CO and CH_4 at different operating temperatures was investigated.By modulating the temperature of the sensor at pulse and sine wave modes with different frequencies and amplitudes,the dynamic responses of the sensor were measured and processed.Results show that the modulating waveshape plays an important role in the improvement of selectivity,while the influence of frequency is small at the suitable sampling frequency in the range of 25 mHz~200 mHz.展开更多
The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network.While semiconductor gas sensors have ...The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network.While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost,their application is limited by their high operating temperature.Two-dimensional(2D)layered materials,typically molybdenum disulfide(MoS2)nanosheets,are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility.This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots(QDs).The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules.The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature,and the limit of NO2 detection was estimated to be 94 ppb.The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance,offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.展开更多
The ZnO nanostructures have been synthesized and studied as the sensing element for the detection of H2S. The ZnO nanostructures were synthesized by hydrothermal method followed by sonication for different interval of...The ZnO nanostructures have been synthesized and studied as the sensing element for the detection of H2S. The ZnO nanostructures were synthesized by hydrothermal method followed by sonication for different interval of time i.e. 30, 60, 90 and 120 min. By using screen printing method, thick films of synthesized ZnO nanostructure were deposited on glass substrate. Gas sensing properties of ZnO nanostructure thick films were studied for low concentration H2S gas at room temperature. The effects of morphology of synthesized ZnO nanostructure on gas sensing properties were studied and discussed. ZnO nanostructure synthesized by this method can be used as a promising material for semiconductor gas sensor to detect poisonous gas like H2S at room temperature with high sensitivity and selectivity.展开更多
In this paper,the Pt/SnO2 nanostructures were prepared via a facile one-step microwave assisted hydrothermal route.The structure of the introduced Pt/SnO2 and its gas-sensing properties toward CO were investigated.The...In this paper,the Pt/SnO2 nanostructures were prepared via a facile one-step microwave assisted hydrothermal route.The structure of the introduced Pt/SnO2 and its gas-sensing properties toward CO were investigated.The results from the TEM test reveal that Pt grows on the SnO2 nanostructure,which was not found for bulk in this situ method,constructing Pt/SnO2.The results indicated that the sensor using 3.0 wt%Pt/SnO2 to 100 ppm carbon monoxide performed a superior sensing properties compared to 1.5 wt%and 4.5 wt%Pt/SnO2 at 225℃.The response time of 3.0 wt%sensor is 16 s to 100 ppm CO at225℃.Such enhanced gas sensing performances could be attributed to the chemical and electrical factors.In view of chemical factors,the presence of Pt facilitates the surface reaction,which will improve the gas sensing properties.With respect to the electrical factors,the Pt/SnO2 plays roles in increasing the sensor’s response due to its characteristic configuration.In addition,the one-step in situ microwave assisted process provides a promising and versatile choice for the preparation of gas sensing materials.展开更多
SnO_(2)has been extensively used in the detection of various gases.As a gas sensing material,SnO_(2)has excellent physical-chemical properties,high reliability,and short adsorption-desorption time.The application of t...SnO_(2)has been extensively used in the detection of various gases.As a gas sensing material,SnO_(2)has excellent physical-chemical properties,high reliability,and short adsorption-desorption time.The application of the traditional SnO_(2)gas sensor is limited due to its higher work-temperature,low gas response,and poor selectivity.Nanomaterials can significantly impact gas-sensitive properties due to the quantum size,surface,and small size effects of nanomaterials.By applying nanotechnology to the preparation of SnO_(2),the SnO_(2)nanomaterial-based sensors could show better performance,which greatly expands the application of SnO_(2)gas sensors.In this review,the preparation method of the SnO_(2)nanostructure,the types of gas detected,and the improvements of SnO_(2)gas-sensing performances via elemental modification are introduced as well as the future development of SnO_(2)is discussed.展开更多
In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different ...In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different temperatures are simulated by using finite-difference time-domain (FDTD) method. The thermal expansion and thermal-optic effects of silicon are taken into account. The results show that the resonant wavelength of microcavity increases linearly as the temperature rising. The wavelength shift along with temperature is 6.6 pm /℃.展开更多
Resonant temperature sensors have drawn considerable attention for their advantages such as high sensitivity,digitized signal output and high precision.This paper presents a new type of resonant temperature sensor,whi...Resonant temperature sensors have drawn considerable attention for their advantages such as high sensitivity,digitized signal output and high precision.This paper presents a new type of resonant temperature sensor,which uses capacitive micromachined ultrasonic transducer(CMUT)as the sensing element.A lumped electro-mechanical-thermal model was established to show its working principle for temperature measurement.The theoretical model explicitly explains the thermally induced changes in the resonant frequency of the CMUT.Then,the finite element method was used to further investigate the sensing performance.The numerical results agree well with the established analytical model qualitatively.The numerical results show that the resonant frequency varies linearly with the temperature over the range of 20℃to 140℃ at the first four vibrating modes.However,the first order vibrating mode shows a higher sensitivity than the other three higher modes.When working at the first order vibrating mode,the temperature coefficient of the resonance frequency(TCf)can reach as high as-1114.3 ppm/℃ at a bias voltage equal to 90%of the collapse voltage of the MCUT.The corresponding nonlinear error was as low as 1.18%.It is discovered that the sensing sensitivity is dependent on the applied bias voltages.A higher sensitivity can be achieved by increasing the bias voltages.展开更多
To observation, poisonous gases in the environment, Sensors with high selectivity, high response and low operating temperature are required. In this work, pure SnO<sub>2</sub> nanoparticles w<span style...To observation, poisonous gases in the environment, Sensors with high selectivity, high response and low operating temperature are required. In this work, pure SnO<sub>2</sub> nanoparticles w<span style="font-family:;" "="">as<span style="font-family:;" "=""> prepared by using a simple and inexpensive technique <span style="font-family:;" "="">(<span style="font-family:;" "="">hydrothermal method<span style="font-family:;" "="">)<span style="font-family:;" "=""> without a template. Various confirmatory tests were performed to characterize SnO<sub>2</sub> nanoparticles such as energy<span style="font-family:;" "=""> <span style="font-family:;" "="">dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transition Electron Microscopy (TEM), during the detection of the gas, we found that p<span style="font-family:Verdana;"><span style="font-family:;" "="">ure SnO<sub>2</sub> nanoparticles ha<span style="font-family:;" "="">s<span style="font-family:;" "=""> a high selectivity for ethanol to 100 ppm at a low temperature (180<span style="font-family:;" "="">°C) and a high response (about 27<span style="font-family:;" "=""> <span style="font-family:;" "="">s) and a low detection limit of 5 ppm, also it<span style="color:red;"> h<span style="font-family:;" "="">ave<span style="font-family:" color:red;"=""> <span style="font-family:;" "="">response/recovery times about (4<span style="font-family:;" "=""> <span style="font-family:;" "="">s, 2<span style="font-family:;" "=""> <span style="font-family:;" "="">s) respectively. The distinctive sensing properties of SnO<sub>2</sub> sensor make it a promising candidate for ethanol detection. Furthermore, the gas-sensing mechanism have been examined.展开更多
A novel system configuration of fiber optic sensor based on optical abso rption is proposed. Several compensation measures are discussed. A simulated exp eriment is designed and the output curve of system is given. Th...A novel system configuration of fiber optic sensor based on optical abso rption is proposed. Several compensation measures are discussed. A simulated exp eriment is designed and the output curve of system is given. The experiment al result shows that these compensation measures are effective on dynamic distu rbances which are caused by background light and optical fiber bend. In addition , the drifts in the light source intensity, fiber losses, and photodetector effi ciency are also compensated.展开更多
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod...A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.展开更多
The perovskite-structure CdSnO_(3) was obtained by calcinating CdSnO_(3)·3H_(2)O precursor at 550℃,which was synthesized by hydrothermal process at 170℃for 16 h.The phase and microstructure of the obtained CdSn...The perovskite-structure CdSnO_(3) was obtained by calcinating CdSnO_(3)·3H_(2)O precursor at 550℃,which was synthesized by hydrothermal process at 170℃for 16 h.The phase and microstructure of the obtained CdSnO_(3) powders were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The CdSnO_(3) powders exhibit uniformly cubic structure with side length of about 100 nm.The effects of working temperature and concentration of detected gas on the gas response were studied.The selectivity of chlorine gas against other gases and response-recovery time of the sensor were also investigated.The results reveal that the CdSnO_(3) gas sensor has enhanced sensing properties to 1-10 ppm chlorine gas at room temperature;the value of gas response can reach 1338.9 to 5 ppm chlorine gas.Moreover,the sensor shows good selectivity and quick response behavior(23 s)to chlorine gas,indicating its application in detecting chlorine gas at room temperature in the future.展开更多
The zinc oxide(ZnO)nanoparticles(NPs)sensors were prepared in-situ on the gas-sensing electrodes by a one-step simple sol-gel method for the detection of hydrogen sulfide(H_(2)S)gas.The sphere-like ZnO NPs were charac...The zinc oxide(ZnO)nanoparticles(NPs)sensors were prepared in-situ on the gas-sensing electrodes by a one-step simple sol-gel method for the detection of hydrogen sulfide(H_(2)S)gas.The sphere-like ZnO NPs were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),x-ray diffraction(XRD),energy dispersive x-ray analysis(EDX),and their H_(2)S sensing performance were measured at room temperature.Testing results indicate that the ZnO NPs exhibit excellent response to H_(2)S gas at room temperature.The response value of the optimal sample to750 ppb H_(2)S is 73.3%,the detection limit reaches to 30 ppb,and the response value is 7.5%.Furthermore,the effects of the calcining time and thickness of the film on the gas-sensing performance were investigated.Both calcining time and film thickness show a negative correlation with the H_(2)S sensing performance.The corresponding reaction mechanism of H_(2)S detection was also discussed.展开更多
This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation i...This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation in multi-waveguides was established first, the dispersion characteristic is depicted by the acoustic propagation theory of stratified media and boundary conditions. Combing with the dispersion characteristics and Tomar's method, the optimal structural parameters for the Love wave device with zero temperature coefficient were extracted, and confirmed by the following experimental results. Excellent temperature coefficient of the Love wave device with SU-8/SiO2 on ST-90°X quartz substrate was evaluated experimentally as only 2.16 ppm/℃, which agrees well with the calculated results. The optimized Love wave device is very promising in gas sensing application.展开更多
Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this ...Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this paper, which is one of the most basic ways for diagnosis of insulation condition. Methods Ultra high frequency(UHF) PD detection method by using internal sensors has been proved efficient, because it may avoid the disturbance of corona, but the sensor installation of this method will be limited by the structure and operation condition of GIS. There are some of electromagnetic (E-M) waves leak from the place of insulation spacer, therefore, the external sensors UHF measuring PD technique is applied, which isn't limited by the operation condition of GIS. Results This paper analyzes propagated electromagnetic (E-M) waves of partial discharge pulse excited by using the finite-difference time-domain (FDTD) method. The signal collected at the outer point is more complex than that of the inner point, and the signals' amplitude of outer is about half of the inner, because it propagates through spacer and insulation slot. Set up UHF PD measuring system. The typical PD in 252kV GIS bus bar was measured using PD detection UHF technique with external sensors. Finally, compare the results of UHF measuring technique using external sensors with the results of FDTD method simulation and the traditional IEC60270 method detection. Conclusion The results of experiment shows that the UHF technique can realize the diagnosis of insulation condition, the results of FDTD method simulation and the result UHF method detection can demonstrate each other, which gives references to further researches and application for UHF PD measuring technique.展开更多
It is essential to develop a methanol gas sensor with high selectivity and low working temperature for human health and environmental monitoring.In this work,a blend of PEDOT:PSS and Ti3C2Tx with the mass ratio of 4:1...It is essential to develop a methanol gas sensor with high selectivity and low working temperature for human health and environmental monitoring.In this work,a blend of PEDOT:PSS and Ti3C2Tx with the mass ratio of 4:1 is used to fabricate a methanol gas sensor.It possesses a high response ratio of the largest response and the second largest response(5.54)and an enhanced response compared to pure PEDOT:PSS and pure Ti3C2Tx tested at room temperature.These findings may pave the way towards design of the MXenes based high-performance gas-sensing materials in the future.展开更多
基金the financial support of the Department of Science and Engineering Research Board (SERB) (Sanction Order No. CRG/2019/000112)。
文摘Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
基金This work is supported by This work was supported by the National Key R&D Program of China(Nos.2020YFB2008604 and 2021YFB3202500)the National Natural Science Foundation of China(Nos.61874034 and 51861135105)+1 种基金the International Science and Technology Cooperation Program of Shanghai Science and Technology Innovation Action Plan(No.21520713300)Fudan University-CIOMP Joint Fund(E02632Y7H0).
文摘With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors.However,it is limited by high operating temperature.The current research works are directed towards fabricating high-performance flexible room-temperature(FRT)gas sensors,which are effective in simplifying the structure of MOS-based sensors,reducing power consumption,and expanding the application of portable devices.This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism,performance,flexibility characteristics,and applications.This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors,including pristine MOS,noble metal nanoparticles modified MOS,organic polymers modified MOS,carbon-based materials(carbon nanotubes and graphene derivatives)modified MOS,and two-dimensional transition metal dichalcogenides materials modified MOS.The effect of light-illuminated to improve gas sensing performance is further discussed.Furthermore,the applications and future perspectives of FRT gas sensors are also discussed.
基金The research was supported by the National Natural Science Foundation of China(Grant Nos.61435010,61675135,and 62005177)the National Natural Science Foundation for Young Scientists of China(Grant No.61905161)the Science and Technology Innovation Commission of Shenzhen(JCYJ20190808142415003).Authors also acknowledge the support from Instrumental Analysis Center of Shenzhen University(Xili Campus).
文摘Ammonia detection possesses great potential in atmosphere environmental protection,agriculture,industry,and rapid medical diagnosis.However,it still remains a great challenge to balance the sensitivity,selectivity,working temperature,and response/recovery speed.In this work,Berlin green(BG)framework is demonstrated as a highly promising sensing material for ammonia detection by both density functional theory simulation and experimental gas sensing investigation.Vacancy in BG framework offers abundant active sites for ammonia absorption,and the absorbed ammonia transfers sufficient electron to BG,arousing remarkable enhancement of resistance.Pristine BG framework shows remarkable response to ammonia at 50–110°C with the highest response at 80°C,which is jointly influenced by ammonia’s absorption onto BG surface and insertion into BG lattice.The sensing performance of BG can hardly be achieved at room temperature due to its high resistance.Introduction of conductive Ti3CN MXene overcomes the high resistance of pure BG framework,and the simply prepared BG/Ti3CN mixture shows high selectivity to ammonia at room temperature with satisfying response/recovery speed.
基金supported financially by the National Natural Science Foundation of China(Nos.,51572158 and 51972200)the Graduate Innovation Fund of Shaanxi University of Science&Technology+2 种基金funded by the Japan Society for the Promotion of Science(JSPS)Grant-in-Aid for the Scientific Research(KAKENHI Nos.20H00297 and Innovative Area“Mixed Anion”(No.16H06439))the Nippon Sheet Glass Foundation for Materials Science and Engineeringby the Dynamic Alliance for Open Innovations Bridging Human,Environment and Materials,the Cooperative Research Program of“Network Joint Research Center for Materials and Devices”。
文摘Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,the nanocomposite combining SnO-SnO_(2)(p-n junction)and Ti_(3)C_(2)T_(x) MXene was successfully synthesized by a one-step hydrothermal method.Because of the existence of a small amount of oxygen during the hydrothermal conditions,part of the p-type SnO was oxidized to n-type SnO_(2),forming in-situ p-n junctions on the surface of Sn O.The hamburger-like SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensor exhibited improved acetone gas sensing response of 12.1(R_(g)/R_(a))at room temperature,which were nearly 11 and 4 times higher than those of pristine Ti_(3)C_(2)T_(x) and pristine SnO-SnO_(2),respectively.Moreover,it expressed a short recovery time(9 s)and outstanding reproducibility.Because of the different work functions,the Schottky barrier was formed between the SnO and the Ti_(3)C_(2)T_(x) nanosheets,acting as a hole accumulation layer(HALs)between Ti_(3)C_(2)T_(x) and tin oxides.Herein,the sensing mechanism based on the formation of hetero-junctions and high conductivity of the metallic phase of Ti_(3)C_(2)T_(x) MXene in SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensors was discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574026 and 11405017)the Liaoning Provincial Natural Science Foundation,China(Grant No.201602453)
文摘In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The experimental results show that the gas sensor has good repeatability,high response rate,short response,and recovery time at room temperature(25℃).The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%,with a response time and recovery time are 0.3 s and 0.7 s respectively.As a contrast,the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate.Therefore,ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics,which provides a feasible method of developing the high performance ZnO-based gas sensor.
文摘The sensitivity and selectivity of gas sensors are related with not only sensing material,but also their operating temperatures.Applying this property,temperature modulation technique has been proposed to improve the selectivity of gas sensors.With a newly developed alumina based micro gas sensor,the sensitivity to CO and CH_4 at different operating temperatures was investigated.By modulating the temperature of the sensor at pulse and sine wave modes with different frequencies and amplitudes,the dynamic responses of the sensor were measured and processed.Results show that the modulating waveshape plays an important role in the improvement of selectivity,while the influence of frequency is small at the suitable sampling frequency in the range of 25 mHz~200 mHz.
基金National Natural Science Foundation of China(Nos.61861136004 and 61922032).
文摘The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network.While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost,their application is limited by their high operating temperature.Two-dimensional(2D)layered materials,typically molybdenum disulfide(MoS2)nanosheets,are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility.This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots(QDs).The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules.The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature,and the limit of NO2 detection was estimated to be 94 ppb.The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance,offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.
文摘The ZnO nanostructures have been synthesized and studied as the sensing element for the detection of H2S. The ZnO nanostructures were synthesized by hydrothermal method followed by sonication for different interval of time i.e. 30, 60, 90 and 120 min. By using screen printing method, thick films of synthesized ZnO nanostructure were deposited on glass substrate. Gas sensing properties of ZnO nanostructure thick films were studied for low concentration H2S gas at room temperature. The effects of morphology of synthesized ZnO nanostructure on gas sensing properties were studied and discussed. ZnO nanostructure synthesized by this method can be used as a promising material for semiconductor gas sensor to detect poisonous gas like H2S at room temperature with high sensitivity and selectivity.
基金supported by the National Natural Science Foundation of China (No.61803172)the Start-up Research Foundation of Hainan University (No.KYQD(ZR)1910)。
文摘In this paper,the Pt/SnO2 nanostructures were prepared via a facile one-step microwave assisted hydrothermal route.The structure of the introduced Pt/SnO2 and its gas-sensing properties toward CO were investigated.The results from the TEM test reveal that Pt grows on the SnO2 nanostructure,which was not found for bulk in this situ method,constructing Pt/SnO2.The results indicated that the sensor using 3.0 wt%Pt/SnO2 to 100 ppm carbon monoxide performed a superior sensing properties compared to 1.5 wt%and 4.5 wt%Pt/SnO2 at 225℃.The response time of 3.0 wt%sensor is 16 s to 100 ppm CO at225℃.Such enhanced gas sensing performances could be attributed to the chemical and electrical factors.In view of chemical factors,the presence of Pt facilitates the surface reaction,which will improve the gas sensing properties.With respect to the electrical factors,the Pt/SnO2 plays roles in increasing the sensor’s response due to its characteristic configuration.In addition,the one-step in situ microwave assisted process provides a promising and versatile choice for the preparation of gas sensing materials.
基金supported by National Natural Science Foundation of China(No.61761047 and 41876055)the Department of Science and Technology of Yunnan Province via the Key Project for the Science and Technology(Grant No.2017FA025)Program for Innovative Research Team(in Science and Technology)in University of Yunnan Province。
文摘SnO_(2)has been extensively used in the detection of various gases.As a gas sensing material,SnO_(2)has excellent physical-chemical properties,high reliability,and short adsorption-desorption time.The application of the traditional SnO_(2)gas sensor is limited due to its higher work-temperature,low gas response,and poor selectivity.Nanomaterials can significantly impact gas-sensitive properties due to the quantum size,surface,and small size effects of nanomaterials.By applying nanotechnology to the preparation of SnO_(2),the SnO_(2)nanomaterial-based sensors could show better performance,which greatly expands the application of SnO_(2)gas sensors.In this review,the preparation method of the SnO_(2)nanostructure,the types of gas detected,and the improvements of SnO_(2)gas-sensing performances via elemental modification are introduced as well as the future development of SnO_(2)is discussed.
基金surpported by the National 863 Project of China (No.2007AA03Z413)the National Nature Science Foundation of China (No.60727004)the Project of Education Office of Shanxi Province of China (No.09JS041)
文摘In this paper, a model of photonic crystal temperature sensor based on crystal microcavity in a straight photonic crystal waveguide is proposed. The transmission characteristics of light in the sensor under different temperatures are simulated by using finite-difference time-domain (FDTD) method. The thermal expansion and thermal-optic effects of silicon are taken into account. The results show that the resonant wavelength of microcavity increases linearly as the temperature rising. The wavelength shift along with temperature is 6.6 pm /℃.
基金supported in part by the National Natural Science Foundation of China ( 51375378, 91323303 )the 13th Fok Ying Tung Education Foundation ( 132010 )+5 种基金the Science and Technology Research Project of Shaanxi (2012KJXX-01)the Fundamental Research Funds for the Central Universities ( 2012jdgz08 )the Major National Science and Technology Project ( 2011ZX04004-061 )the 111 Program ( B12016 )National Key Scientific Instrument and Equipment Development Projects of China ( 2012YQ03026101 )The China Scholarship Council
文摘Resonant temperature sensors have drawn considerable attention for their advantages such as high sensitivity,digitized signal output and high precision.This paper presents a new type of resonant temperature sensor,which uses capacitive micromachined ultrasonic transducer(CMUT)as the sensing element.A lumped electro-mechanical-thermal model was established to show its working principle for temperature measurement.The theoretical model explicitly explains the thermally induced changes in the resonant frequency of the CMUT.Then,the finite element method was used to further investigate the sensing performance.The numerical results agree well with the established analytical model qualitatively.The numerical results show that the resonant frequency varies linearly with the temperature over the range of 20℃to 140℃ at the first four vibrating modes.However,the first order vibrating mode shows a higher sensitivity than the other three higher modes.When working at the first order vibrating mode,the temperature coefficient of the resonance frequency(TCf)can reach as high as-1114.3 ppm/℃ at a bias voltage equal to 90%of the collapse voltage of the MCUT.The corresponding nonlinear error was as low as 1.18%.It is discovered that the sensing sensitivity is dependent on the applied bias voltages.A higher sensitivity can be achieved by increasing the bias voltages.
文摘To observation, poisonous gases in the environment, Sensors with high selectivity, high response and low operating temperature are required. In this work, pure SnO<sub>2</sub> nanoparticles w<span style="font-family:;" "="">as<span style="font-family:;" "=""> prepared by using a simple and inexpensive technique <span style="font-family:;" "="">(<span style="font-family:;" "="">hydrothermal method<span style="font-family:;" "="">)<span style="font-family:;" "=""> without a template. Various confirmatory tests were performed to characterize SnO<sub>2</sub> nanoparticles such as energy<span style="font-family:;" "=""> <span style="font-family:;" "="">dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transition Electron Microscopy (TEM), during the detection of the gas, we found that p<span style="font-family:Verdana;"><span style="font-family:;" "="">ure SnO<sub>2</sub> nanoparticles ha<span style="font-family:;" "="">s<span style="font-family:;" "=""> a high selectivity for ethanol to 100 ppm at a low temperature (180<span style="font-family:;" "="">°C) and a high response (about 27<span style="font-family:;" "=""> <span style="font-family:;" "="">s) and a low detection limit of 5 ppm, also it<span style="color:red;"> h<span style="font-family:;" "="">ave<span style="font-family:" color:red;"=""> <span style="font-family:;" "="">response/recovery times about (4<span style="font-family:;" "=""> <span style="font-family:;" "="">s, 2<span style="font-family:;" "=""> <span style="font-family:;" "="">s) respectively. The distinctive sensing properties of SnO<sub>2</sub> sensor make it a promising candidate for ethanol detection. Furthermore, the gas-sensing mechanism have been examined.
文摘A novel system configuration of fiber optic sensor based on optical abso rption is proposed. Several compensation measures are discussed. A simulated exp eriment is designed and the output curve of system is given. The experiment al result shows that these compensation measures are effective on dynamic distu rbances which are caused by background light and optical fiber bend. In addition , the drifts in the light source intensity, fiber losses, and photodetector effi ciency are also compensated.
基金supported in part by the National Natural Science Foundation of China(Nos.61735014 and 61927812)the Shaanxi Provincial Education Department(No.18JS093)+2 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-530)the Operation Fund of Logging Key Laboratory of Group Company(No.2021DQ0107-11)the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS23213193)。
文摘A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.
基金This project is supported by the Natural Science Foundation of Henan Provincial Education Department,China(Grant Nos.2008B43001 and 2010B150017).
文摘The perovskite-structure CdSnO_(3) was obtained by calcinating CdSnO_(3)·3H_(2)O precursor at 550℃,which was synthesized by hydrothermal process at 170℃for 16 h.The phase and microstructure of the obtained CdSnO_(3) powders were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The CdSnO_(3) powders exhibit uniformly cubic structure with side length of about 100 nm.The effects of working temperature and concentration of detected gas on the gas response were studied.The selectivity of chlorine gas against other gases and response-recovery time of the sensor were also investigated.The results reveal that the CdSnO_(3) gas sensor has enhanced sensing properties to 1-10 ppm chlorine gas at room temperature;the value of gas response can reach 1338.9 to 5 ppm chlorine gas.Moreover,the sensor shows good selectivity and quick response behavior(23 s)to chlorine gas,indicating its application in detecting chlorine gas at room temperature in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904209 and 61904098)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019QF018)Higher Education Research and Development Program of Shandong Province,China(Grant No.J18KA242)。
文摘The zinc oxide(ZnO)nanoparticles(NPs)sensors were prepared in-situ on the gas-sensing electrodes by a one-step simple sol-gel method for the detection of hydrogen sulfide(H_(2)S)gas.The sphere-like ZnO NPs were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),x-ray diffraction(XRD),energy dispersive x-ray analysis(EDX),and their H_(2)S sensing performance were measured at room temperature.Testing results indicate that the ZnO NPs exhibit excellent response to H_(2)S gas at room temperature.The response value of the optimal sample to750 ppb H_(2)S is 73.3%,the detection limit reaches to 30 ppb,and the response value is 7.5%.Furthermore,the effects of the calcining time and thickness of the film on the gas-sensing performance were investigated.Both calcining time and film thickness show a negative correlation with the H_(2)S sensing performance.The corresponding reaction mechanism of H_(2)S detection was also discussed.
基金supported by the National Nature Science Foundation of China(11074268,10834010)
文摘This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation in multi-waveguides was established first, the dispersion characteristic is depicted by the acoustic propagation theory of stratified media and boundary conditions. Combing with the dispersion characteristics and Tomar's method, the optimal structural parameters for the Love wave device with zero temperature coefficient were extracted, and confirmed by the following experimental results. Excellent temperature coefficient of the Love wave device with SU-8/SiO2 on ST-90°X quartz substrate was evaluated experimentally as only 2.16 ppm/℃, which agrees well with the calculated results. The optimized Love wave device is very promising in gas sensing application.
文摘Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this paper, which is one of the most basic ways for diagnosis of insulation condition. Methods Ultra high frequency(UHF) PD detection method by using internal sensors has been proved efficient, because it may avoid the disturbance of corona, but the sensor installation of this method will be limited by the structure and operation condition of GIS. There are some of electromagnetic (E-M) waves leak from the place of insulation spacer, therefore, the external sensors UHF measuring PD technique is applied, which isn't limited by the operation condition of GIS. Results This paper analyzes propagated electromagnetic (E-M) waves of partial discharge pulse excited by using the finite-difference time-domain (FDTD) method. The signal collected at the outer point is more complex than that of the inner point, and the signals' amplitude of outer is about half of the inner, because it propagates through spacer and insulation slot. Set up UHF PD measuring system. The typical PD in 252kV GIS bus bar was measured using PD detection UHF technique with external sensors. Finally, compare the results of UHF measuring technique using external sensors with the results of FDTD method simulation and the traditional IEC60270 method detection. Conclusion The results of experiment shows that the UHF technique can realize the diagnosis of insulation condition, the results of FDTD method simulation and the result UHF method detection can demonstrate each other, which gives references to further researches and application for UHF PD measuring technique.
基金supported by the National Natural Science Foundation of China(No.51602035)State Scholarship Fund of China,Liaoning Provincial Natural Science Foundation of China(No.20180510036)the Fundamental Research Funds for the Central Universities(No.DUT19JC41)。
文摘It is essential to develop a methanol gas sensor with high selectivity and low working temperature for human health and environmental monitoring.In this work,a blend of PEDOT:PSS and Ti3C2Tx with the mass ratio of 4:1 is used to fabricate a methanol gas sensor.It possesses a high response ratio of the largest response and the second largest response(5.54)and an enhanced response compared to pure PEDOT:PSS and pure Ti3C2Tx tested at room temperature.These findings may pave the way towards design of the MXenes based high-performance gas-sensing materials in the future.