The study of the interfacial and bond behaviour of reinforced cement-based materials is important for understanding the mechanical behaviour of such composites.This paper presents extensive experimental,theoretical an...The study of the interfacial and bond behaviour of reinforced cement-based materials is important for understanding the mechanical behaviour of such composites.This paper presents extensive experimental,theoretical and finite element analyses of pull-out tests of galvanised steel strips with different geometries,in lightweight cement-based material blocks with different densities and mechanical properties.The theoretical model proposed here is capable of determining the pull-out strength and bond stress versus the slip relationship between components of reinforced cement-based materials.This bond-slip relationship is then implemented in finite element simulation through the user-defined subroutine of ABAQUS software.Based on the results,a trilinear bond-slip model is suitable for modelling the interface between a steel strip and a cement-based material interface.展开更多
This paper focuses on methodological issues relevant to corrosion risk prediction models.A model was developed for the prediction of corrosion rates associated with hot-dip galvanised reinforcement bar material in con...This paper focuses on methodological issues relevant to corrosion risk prediction models.A model was developed for the prediction of corrosion rates associated with hot-dip galvanised reinforcement bar material in concrete exposed to carbonation and chlorides in outdoor environment.One-year follow-up experiments,over five years,were conducted at various carbonation depths and chloride contents.The observed dependence of corrosion rate on the depth of carbonation and chloride content is complex indicating that the interaction between the carbonation and chloride influencing the corrosion.A non-linear corrosion model was proposed with statistical analysis to model the relationship between the corrosion rate and the test parameters.The main methodological contributions are(i)the proposed modeling approach able to take into account the uncertain measurement errors including unobserved systematic and random heterogeneity over different measured specimens and correlation for the same specimen across different measuring times,which best suits the measurement data;(ii)the developed model in which an interaction parameter is introduced especially to account for the contribution and the degree of the unobserved carbonation-chloride interaction.The proposed model offers greater flexibility for the modelling of measurement data than traditional models.展开更多
The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was ev...The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy. The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry. The surface morphology of the treated hot dip galvanized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretrvatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities, and increased total impedance in the measured frequency, consequently, improving corrosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.展开更多
The capacity of ground support components which have been affected by corrosion is reduced and may ultimately lead to dynamic failure of the component and the strata. In order to maintain an effective,long-term ground...The capacity of ground support components which have been affected by corrosion is reduced and may ultimately lead to dynamic failure of the component and the strata. In order to maintain an effective,long-term ground support system, significant campaigns of rehabilitation are often required in corrosion affected areas which also expose the workers to hazardous conditions. The most common corrosion protection for steel ground support utilises sacrificial systems such as galvanising. Galvanising has previously been proven to be susceptible to some corrosion processes. Stainless steel is the most effective in resistance to corrosion, but can be cost prohibitive, and its mechanical properties often make it unsuited to use in ground support components. Providing an outer protective plastic coating to bolts has proven to be an effective means of protecting the inner steel bar from corrosion. However, these support systems tend to be susceptible to coating damage, and require post cement grouting to provide full encapsulation. In comparison to a standard bolt/resin system, they can be slow to install and expensive.These systems have also been shown to reduce overall load transfer performance of the bolting system. In order to provide a higher level of corrosion protection whilst maintaining current installation practices and bolting cycle times, Minova has developed the Enduro^(TM)steel ground support range. The Enduro^(TM) range consists of standard Minova steel ground support components which have been treated with a unique coating process. The Enduro^(TM)coating has been tested in the harshest of conditions, in laboratory controlled conditions and in underground trials. It has been proven to effectively resist or completely eliminate the formation of corrosion, even in the most aggressive environments. This paper explains the process and provides the details of the laboratory and underground corrosion performance testing carried out on Enduro^(TM)ground support products.展开更多
文摘The study of the interfacial and bond behaviour of reinforced cement-based materials is important for understanding the mechanical behaviour of such composites.This paper presents extensive experimental,theoretical and finite element analyses of pull-out tests of galvanised steel strips with different geometries,in lightweight cement-based material blocks with different densities and mechanical properties.The theoretical model proposed here is capable of determining the pull-out strength and bond stress versus the slip relationship between components of reinforced cement-based materials.This bond-slip relationship is then implemented in finite element simulation through the user-defined subroutine of ABAQUS software.Based on the results,a trilinear bond-slip model is suitable for modelling the interface between a steel strip and a cement-based material interface.
基金study is financed by the Academy of Finland(Grant number 324023)Dr.Esko Sistonen provided the experimental data.
文摘This paper focuses on methodological issues relevant to corrosion risk prediction models.A model was developed for the prediction of corrosion rates associated with hot-dip galvanised reinforcement bar material in concrete exposed to carbonation and chlorides in outdoor environment.One-year follow-up experiments,over five years,were conducted at various carbonation depths and chloride contents.The observed dependence of corrosion rate on the depth of carbonation and chloride content is complex indicating that the interaction between the carbonation and chloride influencing the corrosion.A non-linear corrosion model was proposed with statistical analysis to model the relationship between the corrosion rate and the test parameters.The main methodological contributions are(i)the proposed modeling approach able to take into account the uncertain measurement errors including unobserved systematic and random heterogeneity over different measured specimens and correlation for the same specimen across different measuring times,which best suits the measurement data;(ii)the developed model in which an interaction parameter is introduced especially to account for the contribution and the degree of the unobserved carbonation-chloride interaction.The proposed model offers greater flexibility for the modelling of measurement data than traditional models.
基金the National Natural Science Foundation of China(No.50674022).
文摘The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy. The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry. The surface morphology of the treated hot dip galvanized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretrvatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities, and increased total impedance in the measured frequency, consequently, improving corrosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.
文摘The capacity of ground support components which have been affected by corrosion is reduced and may ultimately lead to dynamic failure of the component and the strata. In order to maintain an effective,long-term ground support system, significant campaigns of rehabilitation are often required in corrosion affected areas which also expose the workers to hazardous conditions. The most common corrosion protection for steel ground support utilises sacrificial systems such as galvanising. Galvanising has previously been proven to be susceptible to some corrosion processes. Stainless steel is the most effective in resistance to corrosion, but can be cost prohibitive, and its mechanical properties often make it unsuited to use in ground support components. Providing an outer protective plastic coating to bolts has proven to be an effective means of protecting the inner steel bar from corrosion. However, these support systems tend to be susceptible to coating damage, and require post cement grouting to provide full encapsulation. In comparison to a standard bolt/resin system, they can be slow to install and expensive.These systems have also been shown to reduce overall load transfer performance of the bolting system. In order to provide a higher level of corrosion protection whilst maintaining current installation practices and bolting cycle times, Minova has developed the Enduro^(TM)steel ground support range. The Enduro^(TM) range consists of standard Minova steel ground support components which have been treated with a unique coating process. The Enduro^(TM)coating has been tested in the harshest of conditions, in laboratory controlled conditions and in underground trials. It has been proven to effectively resist or completely eliminate the formation of corrosion, even in the most aggressive environments. This paper explains the process and provides the details of the laboratory and underground corrosion performance testing carried out on Enduro^(TM)ground support products.