Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunctio...Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunction photocatalyst for water splitting into stoichiometric H_(2)and H_(2)O_(2)under visible light.The catalyst was prepared by depositing 3D bimetallic sulfide(Ag In_(x)S_(y))nanotubes onto 2D g-C_(3)N_(4)nanosheets.Owing to the special 3D-on-2D configuration,the photogenerated carriers could be rapidly transferred and effectively separated through the abundant interfacial heterostructures to avoid recombination,and therefore excellent performance for visible light-driven water splitting could be obtained,with a 24-h H_(2)evolution rate up to 237μmol g^(-1)h^(-1).Furthermore,suitable band alignment enables simultaneous H_(2)and H_(2)O_(2)production in a 1:1 stoichiometric ratio.H_(2)and H_(2)O_(2)were evolved on the conduction band of g-C_(3)N_(4)and on the valance band of Ag In_(x)S_(y),respectively.The novel 3D-on-2D configuration for heterojunction construction proposed in this work provided alternative research ideas toward photocatalytic reaction.展开更多
Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-sc...Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.展开更多
A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigate...A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.展开更多
Normal photocatalysts cannot effectively remove low-concentration NO because of the high recombination rate of the photogenerated carriers.To overcome this problem,S-scheme composites have been developed to fabricate ...Normal photocatalysts cannot effectively remove low-concentration NO because of the high recombination rate of the photogenerated carriers.To overcome this problem,S-scheme composites have been developed to fabricate photocatalysts.Herein,a novel S-scheme Sb2WO6/g-C3N4 nanocomposite was fabricated by an ultrasound-assisted method,which exhibited excellent performance for photocatalytic ppb-level NO removal.Compared with the pure constituents of the nanocomposite,the as-prepared 15%-Sb2WO6/g-C3N4 photocatalyst could remove more than 68%continuous-flowing NO(initial concentration:400 ppb)under visible-light irradiation in 30 min.The findings of the trapping experiments confirmed that•O2^–and h+were the important active species in the NO oxidation reaction.Meanwhile,the transient photocurrent response and PL spectroscopy analyses proved that the unique S-scheme structure of the samples could enhance the charge separation efficiency.In situ DRIFTS revealed that the photocatalytic reaction pathway of NO removal over the Sb2WO6/g-C3N4 nanocomposite occurred via an oxygen-induced route.The present work proposes a new concept for fabricating efficient photocatalysts for photocatalytic ppb-level NO oxidation and provides deeper insights into the mechanism of photocatalytic NO oxidation.展开更多
Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function a...Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.展开更多
The unique heterojunction photocatalyst of graphite carbon nitride (g-C_(3)N_(4)) modified ultrafine TiO_(2) (g-C_(3)N_(4)/TiO_(2)) was successfully fabricated by electrochemical etching and co-annealing method. Howev...The unique heterojunction photocatalyst of graphite carbon nitride (g-C_(3)N_(4)) modified ultrafine TiO_(2) (g-C_(3)N_(4)/TiO_(2)) was successfully fabricated by electrochemical etching and co-annealing method. However, the effects of various environmental factors on the degradation of TC by g-C_(3)N_(4)/TiO_(2) and the internal reaction mechanism are still unclear. In this study, the effects of initial pH, anions, and cations on the photocatalytic degradation of tetracycline hydrochloride (TC) by g-C_(3)N_(4)/TiO_(2) were systematically explored, and the scavenging experiment and intermediate detection were conducted to better reveal the mechanism on photocatalytic degradation of TC. The results showed that the removal efficiency of photocatalytic degradation of TC by g-C_(3)N_(4)/TiO_(2) could reach 99.04% under Xenon lamp irradiation within 120 min. The unique g-C_(3)N_(4)/TiO_(2) heterojunction photocatalyst showed excellent photocatalytic performance for the degradation of TC at pH 3~7, and possesses outstanding anti-interference ability to NO_(3)^(-), Cl^(-), Na^(+), Ca^(2+) and Mg^(2+) ions in natural waters during the photocatalytic degradation TC process. Superoxide radicals (O_(2)^(·-)) and hydroxyl radicals (^(·)OH) were proved as the main reactive species for TC degradation, and the possible mechanism of the unique photocatalytic system for g-C_(3)N_(4)/TiO_(2) was also proposed. The above results can provide a reliable basis and theoretical guidance for the design and application of visible photocatalyst with high activity to degrade the actual wastewater containing TC.展开更多
The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photo...The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction.展开更多
A direct Z-scheme CdFe_(2)O_(4)/g-C3N4 hybrid systems with different weight ratios of CdFe2O4 nanoparticles were successfully designed and constructed for ceftiofur sodium photodegradation.The as-obtained CdFe_(2)O_(4...A direct Z-scheme CdFe_(2)O_(4)/g-C3N4 hybrid systems with different weight ratios of CdFe2O4 nanoparticles were successfully designed and constructed for ceftiofur sodium photodegradation.The as-obtained CdFe_(2)O_(4)/g-C_(3)N_(4) hybrid samples composed of CdFe_(2)O_(4) nanoparticles and g-C3N4 nanosheets were systematically characterized by different techniques including X-ray diffraction,scanning electron microscope,transmission electron microscope,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,UV–vis DRS,chemical oxygen demand,inductively coupled plasma mass spectrometer,photochemical test and electron spin resonance spectrometer technique.The optimal photocatalytic activity for ceftiofur sodium photodegradation was achieved by modulating the weight ration between CdFe_(2)O_(4) nanoparticles and g-C_(3)N_(4) nanosheets.The result from photocatalytic tests indicate that Cd Fe_(2)O_(4)/g-C_(3)N_(4)-2 hybrid sample exhibit highly efficient photocatalytic activity towards ceftiofur sodium removal in comparison with pristine CdFe_(2)O_(4) nanoparticles and pure g-C_(3)N_(4) nanosheets.Meanwhile the excellent photocatalytic stability of CdFe_(2)O_(4)/g-C_(3)N_(4)-2 hybrid sample was also verified during recycling runs towards photocatalytic ceftiofur sodium degradation.The significant enhancement of photocatalytic activity was attributed to the Z-scheme charge separation and transfer based on the construction of tight heterogeneous interface and well-matched band potentials.We expect this research to provide a new insight into the design and preparation of direct Z-scheme hybrid photocatalysts for environmental remediation.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52362012,42077162,51978323)Natural Science Foundation of Jiangxi Province(No.2022ACB203014)+4 种基金Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(Nos.20213BCJ22018,20232BCJ22048)Natural Science Project of the Educational Department in Jiangxi Province(No.GJJ2201121)Natural Science Foundation of Nanchang Hangkong University(No.EA202202256)Educational Reform Project of Jiangxi Province(No.JXYJG-2022-135)Nanchang Hangkong University Educational Reform Project(Nos.sz2214,sz2213,JY22017,KCPY1806)。
文摘Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunction photocatalyst for water splitting into stoichiometric H_(2)and H_(2)O_(2)under visible light.The catalyst was prepared by depositing 3D bimetallic sulfide(Ag In_(x)S_(y))nanotubes onto 2D g-C_(3)N_(4)nanosheets.Owing to the special 3D-on-2D configuration,the photogenerated carriers could be rapidly transferred and effectively separated through the abundant interfacial heterostructures to avoid recombination,and therefore excellent performance for visible light-driven water splitting could be obtained,with a 24-h H_(2)evolution rate up to 237μmol g^(-1)h^(-1).Furthermore,suitable band alignment enables simultaneous H_(2)and H_(2)O_(2)production in a 1:1 stoichiometric ratio.H_(2)and H_(2)O_(2)were evolved on the conduction band of g-C_(3)N_(4)and on the valance band of Ag In_(x)S_(y),respectively.The novel 3D-on-2D configuration for heterojunction construction proposed in this work provided alternative research ideas toward photocatalytic reaction.
文摘Constructing step-scheme(S-scheme)heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials.In this work,a series of sulfur-doped g-C3N4(SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods.The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red(CR)aqueous solution.The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure,but also from the S-scheme heterojunction.Furthermore,the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites.The built-in electric field,band edge bending,and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light.Therefore,the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability.These results were adequately verified by radical trapping experiments,ESR tests,and in situ XPS analyses,suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism.This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.
基金supported by the Scientific Research Project from Hubei Provincial Department of Education(Q20181808)the Research and Innovation Initiatives of Wuhan Polytechnic University(2018J04,2018Y07)~~
文摘A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.
文摘Normal photocatalysts cannot effectively remove low-concentration NO because of the high recombination rate of the photogenerated carriers.To overcome this problem,S-scheme composites have been developed to fabricate photocatalysts.Herein,a novel S-scheme Sb2WO6/g-C3N4 nanocomposite was fabricated by an ultrasound-assisted method,which exhibited excellent performance for photocatalytic ppb-level NO removal.Compared with the pure constituents of the nanocomposite,the as-prepared 15%-Sb2WO6/g-C3N4 photocatalyst could remove more than 68%continuous-flowing NO(initial concentration:400 ppb)under visible-light irradiation in 30 min.The findings of the trapping experiments confirmed that•O2^–and h+were the important active species in the NO oxidation reaction.Meanwhile,the transient photocurrent response and PL spectroscopy analyses proved that the unique S-scheme structure of the samples could enhance the charge separation efficiency.In situ DRIFTS revealed that the photocatalytic reaction pathway of NO removal over the Sb2WO6/g-C3N4 nanocomposite occurred via an oxygen-induced route.The present work proposes a new concept for fabricating efficient photocatalysts for photocatalytic ppb-level NO oxidation and provides deeper insights into the mechanism of photocatalytic NO oxidation.
文摘Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.
基金financially supported by National Natural Science Foundation of China (Nos. 52070107, 51678323)Natural Science Foundation of Shandong Province (Nos. ZR2019MD012,ZR2017MEE026)+1 种基金Support Plan on Youth Innovation Science and Technology for Higher Education of Shandong Province (No.2019KJD014)Natural Science Foundation of Heilongjiang Province (No. B2015024)。
文摘The unique heterojunction photocatalyst of graphite carbon nitride (g-C_(3)N_(4)) modified ultrafine TiO_(2) (g-C_(3)N_(4)/TiO_(2)) was successfully fabricated by electrochemical etching and co-annealing method. However, the effects of various environmental factors on the degradation of TC by g-C_(3)N_(4)/TiO_(2) and the internal reaction mechanism are still unclear. In this study, the effects of initial pH, anions, and cations on the photocatalytic degradation of tetracycline hydrochloride (TC) by g-C_(3)N_(4)/TiO_(2) were systematically explored, and the scavenging experiment and intermediate detection were conducted to better reveal the mechanism on photocatalytic degradation of TC. The results showed that the removal efficiency of photocatalytic degradation of TC by g-C_(3)N_(4)/TiO_(2) could reach 99.04% under Xenon lamp irradiation within 120 min. The unique g-C_(3)N_(4)/TiO_(2) heterojunction photocatalyst showed excellent photocatalytic performance for the degradation of TC at pH 3~7, and possesses outstanding anti-interference ability to NO_(3)^(-), Cl^(-), Na^(+), Ca^(2+) and Mg^(2+) ions in natural waters during the photocatalytic degradation TC process. Superoxide radicals (O_(2)^(·-)) and hydroxyl radicals (^(·)OH) were proved as the main reactive species for TC degradation, and the possible mechanism of the unique photocatalytic system for g-C_(3)N_(4)/TiO_(2) was also proposed. The above results can provide a reliable basis and theoretical guidance for the design and application of visible photocatalyst with high activity to degrade the actual wastewater containing TC.
文摘The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction.
基金financially supported by the Natural Science Foundation of Zhejiang Province(No.LQ19E020001)the Science and Technology Project of Taizhou City(No.1902gy19)。
文摘A direct Z-scheme CdFe_(2)O_(4)/g-C3N4 hybrid systems with different weight ratios of CdFe2O4 nanoparticles were successfully designed and constructed for ceftiofur sodium photodegradation.The as-obtained CdFe_(2)O_(4)/g-C_(3)N_(4) hybrid samples composed of CdFe_(2)O_(4) nanoparticles and g-C3N4 nanosheets were systematically characterized by different techniques including X-ray diffraction,scanning electron microscope,transmission electron microscope,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,UV–vis DRS,chemical oxygen demand,inductively coupled plasma mass spectrometer,photochemical test and electron spin resonance spectrometer technique.The optimal photocatalytic activity for ceftiofur sodium photodegradation was achieved by modulating the weight ration between CdFe_(2)O_(4) nanoparticles and g-C_(3)N_(4) nanosheets.The result from photocatalytic tests indicate that Cd Fe_(2)O_(4)/g-C_(3)N_(4)-2 hybrid sample exhibit highly efficient photocatalytic activity towards ceftiofur sodium removal in comparison with pristine CdFe_(2)O_(4) nanoparticles and pure g-C_(3)N_(4) nanosheets.Meanwhile the excellent photocatalytic stability of CdFe_(2)O_(4)/g-C_(3)N_(4)-2 hybrid sample was also verified during recycling runs towards photocatalytic ceftiofur sodium degradation.The significant enhancement of photocatalytic activity was attributed to the Z-scheme charge separation and transfer based on the construction of tight heterogeneous interface and well-matched band potentials.We expect this research to provide a new insight into the design and preparation of direct Z-scheme hybrid photocatalysts for environmental remediation.