In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion metho...In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.展开更多
将工业偏钛酸浆料和尿素混合均匀后高温煅烧制备g-C3N4/TiO2光催化复合材料,对其结构进行了表征,以NO为目标物、波长430~470 nm的12 W LED灯为光源,用对NO的去除率评价复合材料的气相光催化活性.结果表明,所制样品为氮掺杂Ti O2与g-C3N4...将工业偏钛酸浆料和尿素混合均匀后高温煅烧制备g-C3N4/TiO2光催化复合材料,对其结构进行了表征,以NO为目标物、波长430~470 nm的12 W LED灯为光源,用对NO的去除率评价复合材料的气相光催化活性.结果表明,所制样品为氮掺杂Ti O2与g-C3N4/TiO2的复合物.复合材料的最佳制备条件为尿素与偏钛酸质量比2:1,450℃下煅烧1 h,该条件下样品产率最高,对NO的去除率达48.40%.展开更多
文摘In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.