Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G en...The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G envisions a hyper-connected environment that supports ubiquitous intelligence through ultra-low latency,high throughput,massive device connectivity,and integrated sensing and communication.On the other hand,generative AI,powered by large foundation models,has emerged as a powerful paradigm capable of creating.展开更多
Altermagnets,a class of unconventional antiferromagnets with non-relativistic spin-splitting,offer promising potential for antiferromagnetic spintronic devices.While many altermagnets are limited by either low magneti...Altermagnets,a class of unconventional antiferromagnets with non-relativistic spin-splitting,offer promising potential for antiferromagnetic spintronic devices.While many altermagnets are limited by either low magnetic transition temperatures or weak spin splitting,the recently discovered metal CrSb,with high N′eel temperature(T_(N)=710 K)and significant spin-splitting due to its unique spin space group,provides a robust platform for remarkable tunneling magnetoresistance(TMR)in collinear all-antiferromagnetic tunnel junctions(AATJs).This study systematically investigates the spin-polarized Fermi surface of CrSb and spin-dependent electron transport in CrSb-based AATJs.The CrSb/β-InSe/CrSb junction with a three-monolayer InSe barrier exhibits a TMR ratio of approximately 290%,with energy-dependent analysis revealing TMR ratios that may exceed 850%when considering the shift of the Fermi energy.We also demonstrate the angle-dependent TMR of CrSb-based AATJs by adjusting N′eel vector orientations.Our findings might provide strong theoretical support for CrSb as a versatile building block for all-antiferromagnetic memory devices.展开更多
Osteosarcoma(OS)is the most frequent primary bone sarcomas with high recurrence and poor prognosis.Emerging evidence indicates that membraneless organelles stress granules(SGs),whose assemblies are driven by scaffold ...Osteosarcoma(OS)is the most frequent primary bone sarcomas with high recurrence and poor prognosis.Emerging evidence indicates that membraneless organelles stress granules(SGs),whose assemblies are driven by scaffold protein G3BP1,are extensively involved in tumor,especially in OS.However,how SGs behave and communicate with organelles,particularly nucleoli and mitochondria,during drug challenges remain unknown.This study revealed that chemotherapeutic drugs activated the cysteine protease asparagine endopeptidase(AEP)to specifically cleave the SG core protein G3BP1 at N258/N309 in OS and malignant glioma.tG3BP1-Ns modulated SG dynamics by competitively binding to full-length G3BP1.Strikingly,tG3BP1-Cs,containing a conserved RNA recognition motif CCUBSCUS,sequestered mRNAs of ribosomal proteins and oxidative phosphorylation genes in the nucleoli and mitochondria to repress translation and oxidative stress.Moreover,the inhibition of AEP promoted the tumor-suppressing effect of chemotherapeutic drugs,whereas AEP-cleaved G3BP1 rescue reversed the effect in both OS and glioma models.Cancerous tissues exhibited high levels of AEP and G3BP1 truncations,which were strongly associated with poor prognosis.展开更多
The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the c...The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern MA schemes, from Orthogonal Multiple Access (OMA)-based approaches like Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) to advanced Non-Orthogonal Multiple Access (NOMA) methods, including power domain-NOMA, Sparse Code Multiple Access (SCMA), and Rate Splitting Multiple Access (RSMA). The study further categorizes AI techniques—such as Machine Learning (ML), Deep Learning (DL), Reinforcement Learning (RL), Federated Learning (FL), and Explainable AI (XAI)—and maps them to practical challenges in Dynamic Spectrum Management (DSM), protocol optimization, and real-time distributed decision-making. Optimization strategies, including metaheuristics and multi-agent learning frameworks, are reviewed to illustrate the potential of AI in enhancing energy efficiency, system responsiveness, and cross-layer RA. Additionally, the review addresses security, privacy, and trust concerns, highlighting solutions like privacy-preserving ML, FL, and XAI in 6G and beyond. By identifying research gaps, challenges, and future directions, this work offers a structured resource for researchers and practitioners aiming to integrate AI into 6G MA systems for intelligent, scalable, and secure wireless communications.展开更多
Osteoarthritis(OA)is a prevalent degenerative joint disorder marked by chronic pain,inflammation,and cartilage loss,with current treatments limited to symptom relief.G protein-coupled receptors(GPCRs)play a pivotal ro...Osteoarthritis(OA)is a prevalent degenerative joint disorder marked by chronic pain,inflammation,and cartilage loss,with current treatments limited to symptom relief.G protein-coupled receptors(GPCRs)play a pivotal role in OA progression by regulating inflammation,chondrocyte survival,and matrix homeostasis.However,their multifaceted signaling,via G proteins orβ-arrestins,poses challenges for precise therapeutic targeting.Biased agonism,where ligands selectively activate specific GPCR pathways,emerges as a promising approach to optimize efficacy and reduce side effects.This review examines biased signaling in OAassociated GPCRs,including cannabinoid receptors(CB1,CB2),chemokine receptors(CCR2,CXCR4),protease-activated receptors(PAR-2),adenosine receptors(A1R,A2AR,A2BR,A3R),melanocortin receptors(MC1R,MC3R),bradykinin receptors(B2R),prostaglandin E2 receptors(EP-2,EP-4),and calcium-sensing receptors(CaSR).We analyze ligands in clinical trials and explore natural products from Traditional Chinese Medicine as potential biased agonists.These compounds,with diverse structures and bioactivities,offer novel therapeutic avenues.By harnessing biased agonism,this review underscores the potential for developing targeted,safer OA therapies that address its complex pathology,bridging molecular insights with clinical translation.展开更多
Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-toler...Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme.展开更多
The rapid convergence of Information and Communication Technologies(ICT),driven by advancements in 5G/6G networks,cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT),is reshaping modern digital...The rapid convergence of Information and Communication Technologies(ICT),driven by advancements in 5G/6G networks,cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT),is reshaping modern digital ecosystems.As massive,distributed data streams are generated across edge devices and network layers,there is a growing need for intelligent,privacy-preserving AI solutions that can operate efficiently at the network edge.Federated Learning(FL)enables decentralized model training without transferring sensitive data,addressing key challenges around privacy,bandwidth,and latency.Despite its benefits in enhancing efficiency,real-time analytics,and regulatory compliance,FL adoption faces challenges,including communication overhead,heterogeneity,security vulnerabilities,and limited edge resources.While recent studies have addressed these issues individually,the literature lacks a unified,cross-domain perspective that reflects the architectural complexity and application diversity of Convergence ICT.This systematic review offers a comprehensive,cross-domain examination of FL within converged ICT infrastructures.The central research question guiding this review is:How can FL be effectively integrated into Convergence ICT environments,and what are the main challenges in implementing FL in such environments,along with possible solutions?We begin with a foundational overview of FL concepts and classifications,followed by a detailed taxonomy of FL architectures,learning strategies,and privacy-preserving mechanisms.Through in-depth case studies,we analyse FL’s application across diverse verticals,including smart cities,healthcare,industrial automation,and autonomous systems.We further identify critical challenges—such as system and data heterogeneity,limited edge resources,and security vulnerabilities—and review state-of-the-art mitigation strategies,including edge-aware optimization,secure aggregation,and adaptive model updates.In addition,we explore emerging directions in FL research,such as energy-efficient learning,federated reinforcement learning,and integration with blockchain,quantum computing,and self-adaptive networks.This review not only synthesizes current literature but also proposes a forward-looking road map to support scalable,secure,and sustainable FL deployment in future ICT ecosystems.展开更多
The G20 Leaders’Summit will be held in South Africa in late November.As the presiding nation,South Africa has held or will host a total of 132 o"cial meetings this year,aiming to address the most pressing challe...The G20 Leaders’Summit will be held in South Africa in late November.As the presiding nation,South Africa has held or will host a total of 132 o"cial meetings this year,aiming to address the most pressing challenges facing the world,particularly those a!ecting countries in the Global South.In recent years,hunger and poverty have remained persistent challenges globally.Despite impressive economic growth in many countries,millions still su!er from food insecurity,malnutrition,and extreme poverty,particularly in the Global South.Recognising this,the G20 has launched a key initiative,the Global Alliance Against Hunger and Poverty(GAAHP),aimed at accelerating progress towards the United Nations Sustainable Development Goals(SDGs),specifically SDG 1(no poverty),SDG 2(zero hunger),and related goals focused on reducing inequality and fostering global partnerships.展开更多
Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth...Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure.Additionally,local data processing demands substantial manpower and hardware investments.Data isolation across different healthcare institutions hinders crossinstitutional collaboration in clinics and research.In this work,we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing,6G bandwidth,edge computing,federated learning,and blockchain technology.This system is called Cloud-MRI,aiming at solving the problems of MRI data storage security,transmission speed,artificial intelligence(AI)algorithm maintenance,hardware upgrading,and collaborative work.The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data(ISMRMRD)format.Then,the data are uploaded to the cloud or edge nodes for fast image reconstruction,neural network training,and automatic analysis.Then,the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services.The Cloud-MRI system will save the raw imaging data,reduce the risk of data loss,facilitate inter-institutional medical collaboration,and finally improve diagnostic accuracy and work efficiency.展开更多
The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devic...The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devices.However,the performance of current 6G network intelligence technologies and its level of integration with the architecture,along with the system-level requirements for the number of access devices and limitations on energy consumption,have impeded further improvements in the 6G smart F-RAN.To better analyze the root causes of the network problems and promote the practical development of the network,this study used structured methods such as segmentation to conduct a review of the topic.The research results reveal that there are still many problems in the current 6G smart F-RAN.Future research directions and difficulties are also discussed.展开更多
In an industrial park in Chonburi Province,about one-hour drive from the Thai capital of Bangkok,robotic arms on production lines move up and down,material-handling robots carrying components shuttle back and forth,an...In an industrial park in Chonburi Province,about one-hour drive from the Thai capital of Bangkok,robotic arms on production lines move up and down,material-handling robots carrying components shuttle back and forth,and Ferris wheel-shaped overhead tracks transport semi-finished products to the next destination.A factory equipped with a dedicated 5G network glows with automation,digitization,and intelligence.This is a fruit of China-Thailand cooperation on the digital economy.In recent years,Thailand’s digital economy has achieved rapid development with an average annual growth rate exceeding 15 percent,making it a star performer in Southeast Asia’s digital transformation.Chinese technology and solutions have played a pivotal role in this process.展开更多
With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of hig...With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of high, medium, and low Earth orbit satellite networks with terrestrial networks has become a critical direction for future communication technologies. The objective is to develop a space-terrestrial integrated 6G network that ensures ubiquitous connectivity and seamless services, facilitating intelligent interconnection and collaborative symbiosis among humans, machines, and objects. This integration has become a central focus of global technological innovation.展开更多
The G20 Youth Summit(Y20)took place in Johannesburg,South Africa,from 18 to 23 August.Sun Ruoshui,a research assistant from the Institute of Climate Change and Sustainable Development,Tsinghua University,was appointed...The G20 Youth Summit(Y20)took place in Johannesburg,South Africa,from 18 to 23 August.Sun Ruoshui,a research assistant from the Institute of Climate Change and Sustainable Development,Tsinghua University,was appointed by the All-China Youth Federation to represent China in the discussions on Climate and Environmental Sustainability.Specialising in global climate governance,international climate negotiation and climate policy,Sun has previously served as a member of the Chinese delegation to the 2023 United Nations Climate Change Conference(COP28)and 2024 Bonn Subsidiary Bodies Meeting.展开更多
The Global Leaders’Meeting on Women was held in Beijing,the capital of China,on 13-14 October.South African Minister in the Presidency for Women,Youth and Persons with Disabilities Sindisiwe Chikunga,attended the eve...The Global Leaders’Meeting on Women was held in Beijing,the capital of China,on 13-14 October.South African Minister in the Presidency for Women,Youth and Persons with Disabilities Sindisiwe Chikunga,attended the event.ChinAfrica spoke with her in an exclusive interview about the messages she brought to the meeting,South Africa’s progress in women’s empowerment,how the G20 presidency can contribute to this cause,and China’s role.An edited excerpt of the interview follows.展开更多
Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing...Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework.展开更多
This paper presents an enhanced version of the correlation-driven dual-branch feature decomposition framework(CDDFuse)for fusing low-and high-exposure images captured by the G400BSI sensor.We introduce a novel neural ...This paper presents an enhanced version of the correlation-driven dual-branch feature decomposition framework(CDDFuse)for fusing low-and high-exposure images captured by the G400BSI sensor.We introduce a novel neural long-term memory(NLM)module into the CDDFuse architecture to improve feature extraction by leveraging persistent global feature representations across image sequences.The proposed method effectively preserves dynamic range and structural details,and is evaluated using a new metric,the ATEF dynamic range preservation index(ATEF-DRPI).Experimental results on a G400BSI dataset demonstrate superior fusion quality,with ATEF-DRPI scores of 0.90,a 12.5%improvement over that of the baseline CDDFuse(0.80),indicating better detail retention in bright and dark regions.This work advances image fusion techniques for extreme lighting conditions,offering improved performance for downstream vision tasks.展开更多
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘The rapid advancement of 6G communication technologies and generative artificial intelligence(AI)is catalyzing a new wave of innovation at the intersection of networking and intelligent computing.On the one hand,6G envisions a hyper-connected environment that supports ubiquitous intelligence through ultra-low latency,high throughput,massive device connectivity,and integrated sensing and communication.On the other hand,generative AI,powered by large foundation models,has emerged as a powerful paradigm capable of creating.
基金supported by the National Natural Science Foundation of China(Grant Nos.T2394475,T2394470,T2394471,and 12174129)the China Postdoctoral Science Foundation(Grant No.2023M741269).
文摘Altermagnets,a class of unconventional antiferromagnets with non-relativistic spin-splitting,offer promising potential for antiferromagnetic spintronic devices.While many altermagnets are limited by either low magnetic transition temperatures or weak spin splitting,the recently discovered metal CrSb,with high N′eel temperature(T_(N)=710 K)and significant spin-splitting due to its unique spin space group,provides a robust platform for remarkable tunneling magnetoresistance(TMR)in collinear all-antiferromagnetic tunnel junctions(AATJs).This study systematically investigates the spin-polarized Fermi surface of CrSb and spin-dependent electron transport in CrSb-based AATJs.The CrSb/β-InSe/CrSb junction with a three-monolayer InSe barrier exhibits a TMR ratio of approximately 290%,with energy-dependent analysis revealing TMR ratios that may exceed 850%when considering the shift of the Fermi energy.We also demonstrate the angle-dependent TMR of CrSb-based AATJs by adjusting N′eel vector orientations.Our findings might provide strong theoretical support for CrSb as a versatile building block for all-antiferromagnetic memory devices.
基金supported by the National Key R&D Program of China(grant number 2023ZD0502206,2024YFB3213200,Topic No.2024YFB3213204)National Natural Science Foundation of China(nos.82273278,82373514,82373202,82272728,82002630,81772654)+5 种基金the National Key Research and Development Program of China(grant number 2022YFC2404602)Shanghai Hospital Development Center Foundation(grant number SHDC12023108)Scientific and Technological Innovation Action Plan of Shanghai Science and Technology Committee(grant number 22Y31900103)Beijing Science and Technology Innovation Medical Development Foundation(grant number KC2021-JX-0170-9)the Shanghai Association for Science and Technology(nos.201409003000,201409002400,20YF1426200)Shanghai Science and Technology Innovation Action Plan(grant number 23Y41900100).
文摘Osteosarcoma(OS)is the most frequent primary bone sarcomas with high recurrence and poor prognosis.Emerging evidence indicates that membraneless organelles stress granules(SGs),whose assemblies are driven by scaffold protein G3BP1,are extensively involved in tumor,especially in OS.However,how SGs behave and communicate with organelles,particularly nucleoli and mitochondria,during drug challenges remain unknown.This study revealed that chemotherapeutic drugs activated the cysteine protease asparagine endopeptidase(AEP)to specifically cleave the SG core protein G3BP1 at N258/N309 in OS and malignant glioma.tG3BP1-Ns modulated SG dynamics by competitively binding to full-length G3BP1.Strikingly,tG3BP1-Cs,containing a conserved RNA recognition motif CCUBSCUS,sequestered mRNAs of ribosomal proteins and oxidative phosphorylation genes in the nucleoli and mitochondria to repress translation and oxidative stress.Moreover,the inhibition of AEP promoted the tumor-suppressing effect of chemotherapeutic drugs,whereas AEP-cleaved G3BP1 rescue reversed the effect in both OS and glioma models.Cancerous tissues exhibited high levels of AEP and G3BP1 truncations,which were strongly associated with poor prognosis.
文摘The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern MA schemes, from Orthogonal Multiple Access (OMA)-based approaches like Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) to advanced Non-Orthogonal Multiple Access (NOMA) methods, including power domain-NOMA, Sparse Code Multiple Access (SCMA), and Rate Splitting Multiple Access (RSMA). The study further categorizes AI techniques—such as Machine Learning (ML), Deep Learning (DL), Reinforcement Learning (RL), Federated Learning (FL), and Explainable AI (XAI)—and maps them to practical challenges in Dynamic Spectrum Management (DSM), protocol optimization, and real-time distributed decision-making. Optimization strategies, including metaheuristics and multi-agent learning frameworks, are reviewed to illustrate the potential of AI in enhancing energy efficiency, system responsiveness, and cross-layer RA. Additionally, the review addresses security, privacy, and trust concerns, highlighting solutions like privacy-preserving ML, FL, and XAI in 6G and beyond. By identifying research gaps, challenges, and future directions, this work offers a structured resource for researchers and practitioners aiming to integrate AI into 6G MA systems for intelligent, scalable, and secure wireless communications.
基金supported by the National Key R&D Program of the Ministry of Science and Technology(2023YFC2509900)National Natural Science Foundation of China(82374106)+3 种基金National Natural Science Foundation of China(U22A20371)the Basic and Applied Basic Research Fund of Guangdong Province(2021B1515120061)the Shenzhen Science and Technology Innovation Committee(JCYJ20210324102006017)SZ-HK Joint Laboratory for Innovative Biomaterials under CAS-HK Joint Laboratories(2024-2028).
文摘Osteoarthritis(OA)is a prevalent degenerative joint disorder marked by chronic pain,inflammation,and cartilage loss,with current treatments limited to symptom relief.G protein-coupled receptors(GPCRs)play a pivotal role in OA progression by regulating inflammation,chondrocyte survival,and matrix homeostasis.However,their multifaceted signaling,via G proteins orβ-arrestins,poses challenges for precise therapeutic targeting.Biased agonism,where ligands selectively activate specific GPCR pathways,emerges as a promising approach to optimize efficacy and reduce side effects.This review examines biased signaling in OAassociated GPCRs,including cannabinoid receptors(CB1,CB2),chemokine receptors(CCR2,CXCR4),protease-activated receptors(PAR-2),adenosine receptors(A1R,A2AR,A2BR,A3R),melanocortin receptors(MC1R,MC3R),bradykinin receptors(B2R),prostaglandin E2 receptors(EP-2,EP-4),and calcium-sensing receptors(CaSR).We analyze ligands in clinical trials and explore natural products from Traditional Chinese Medicine as potential biased agonists.These compounds,with diverse structures and bioactivities,offer novel therapeutic avenues.By harnessing biased agonism,this review underscores the potential for developing targeted,safer OA therapies that address its complex pathology,bridging molecular insights with clinical translation.
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme.
文摘The rapid convergence of Information and Communication Technologies(ICT),driven by advancements in 5G/6G networks,cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT),is reshaping modern digital ecosystems.As massive,distributed data streams are generated across edge devices and network layers,there is a growing need for intelligent,privacy-preserving AI solutions that can operate efficiently at the network edge.Federated Learning(FL)enables decentralized model training without transferring sensitive data,addressing key challenges around privacy,bandwidth,and latency.Despite its benefits in enhancing efficiency,real-time analytics,and regulatory compliance,FL adoption faces challenges,including communication overhead,heterogeneity,security vulnerabilities,and limited edge resources.While recent studies have addressed these issues individually,the literature lacks a unified,cross-domain perspective that reflects the architectural complexity and application diversity of Convergence ICT.This systematic review offers a comprehensive,cross-domain examination of FL within converged ICT infrastructures.The central research question guiding this review is:How can FL be effectively integrated into Convergence ICT environments,and what are the main challenges in implementing FL in such environments,along with possible solutions?We begin with a foundational overview of FL concepts and classifications,followed by a detailed taxonomy of FL architectures,learning strategies,and privacy-preserving mechanisms.Through in-depth case studies,we analyse FL’s application across diverse verticals,including smart cities,healthcare,industrial automation,and autonomous systems.We further identify critical challenges—such as system and data heterogeneity,limited edge resources,and security vulnerabilities—and review state-of-the-art mitigation strategies,including edge-aware optimization,secure aggregation,and adaptive model updates.In addition,we explore emerging directions in FL research,such as energy-efficient learning,federated reinforcement learning,and integration with blockchain,quantum computing,and self-adaptive networks.This review not only synthesizes current literature but also proposes a forward-looking road map to support scalable,secure,and sustainable FL deployment in future ICT ecosystems.
文摘The G20 Leaders’Summit will be held in South Africa in late November.As the presiding nation,South Africa has held or will host a total of 132 o"cial meetings this year,aiming to address the most pressing challenges facing the world,particularly those a!ecting countries in the Global South.In recent years,hunger and poverty have remained persistent challenges globally.Despite impressive economic growth in many countries,millions still su!er from food insecurity,malnutrition,and extreme poverty,particularly in the Global South.Recognising this,the G20 has launched a key initiative,the Global Alliance Against Hunger and Poverty(GAAHP),aimed at accelerating progress towards the United Nations Sustainable Development Goals(SDGs),specifically SDG 1(no poverty),SDG 2(zero hunger),and related goals focused on reducing inequality and fostering global partnerships.
基金supported by the National Natural Science Foundation of China(62122064,62331021,62371410)the Natural Science Foundation of Fujian Province of China(2023J02005 and 2021J011184)+1 种基金the President Fund of Xiamen University(20720220063)the Nanqiang Outstanding Talents Program of Xiamen University.
文摘Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure.Additionally,local data processing demands substantial manpower and hardware investments.Data isolation across different healthcare institutions hinders crossinstitutional collaboration in clinics and research.In this work,we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing,6G bandwidth,edge computing,federated learning,and blockchain technology.This system is called Cloud-MRI,aiming at solving the problems of MRI data storage security,transmission speed,artificial intelligence(AI)algorithm maintenance,hardware upgrading,and collaborative work.The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data(ISMRMRD)format.Then,the data are uploaded to the cloud or edge nodes for fast image reconstruction,neural network training,and automatic analysis.Then,the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services.The Cloud-MRI system will save the raw imaging data,reduce the risk of data loss,facilitate inter-institutional medical collaboration,and finally improve diagnostic accuracy and work efficiency.
基金supported by the National Natural Science Foundation of China(62202215)Liaoning Province Applied Basic Research Program(Youth Special Project,2023JH2/101600038)+2 种基金Shenyang Youth Science and Technology Innovation Talent Support Program(RC220458)Guangxuan Program of Shenyang Ligong University(SYLUGXRC202216)Basic Research Special Funds for Undergraduate Universities in Liaoning Province(LJ212410144067).
文摘The 6G smart Fog Radio Access Network(F-RAN)is an integration of 6G network intelligence technologies and the F-RAN architecture.Its aim is to provide low-latency and high-performance services for massive access devices.However,the performance of current 6G network intelligence technologies and its level of integration with the architecture,along with the system-level requirements for the number of access devices and limitations on energy consumption,have impeded further improvements in the 6G smart F-RAN.To better analyze the root causes of the network problems and promote the practical development of the network,this study used structured methods such as segmentation to conduct a review of the topic.The research results reveal that there are still many problems in the current 6G smart F-RAN.Future research directions and difficulties are also discussed.
文摘In an industrial park in Chonburi Province,about one-hour drive from the Thai capital of Bangkok,robotic arms on production lines move up and down,material-handling robots carrying components shuttle back and forth,and Ferris wheel-shaped overhead tracks transport semi-finished products to the next destination.A factory equipped with a dedicated 5G network glows with automation,digitization,and intelligence.This is a fruit of China-Thailand cooperation on the digital economy.In recent years,Thailand’s digital economy has achieved rapid development with an average annual growth rate exceeding 15 percent,making it a star performer in Southeast Asia’s digital transformation.Chinese technology and solutions have played a pivotal role in this process.
文摘With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of high, medium, and low Earth orbit satellite networks with terrestrial networks has become a critical direction for future communication technologies. The objective is to develop a space-terrestrial integrated 6G network that ensures ubiquitous connectivity and seamless services, facilitating intelligent interconnection and collaborative symbiosis among humans, machines, and objects. This integration has become a central focus of global technological innovation.
文摘The G20 Youth Summit(Y20)took place in Johannesburg,South Africa,from 18 to 23 August.Sun Ruoshui,a research assistant from the Institute of Climate Change and Sustainable Development,Tsinghua University,was appointed by the All-China Youth Federation to represent China in the discussions on Climate and Environmental Sustainability.Specialising in global climate governance,international climate negotiation and climate policy,Sun has previously served as a member of the Chinese delegation to the 2023 United Nations Climate Change Conference(COP28)and 2024 Bonn Subsidiary Bodies Meeting.
文摘The Global Leaders’Meeting on Women was held in Beijing,the capital of China,on 13-14 October.South African Minister in the Presidency for Women,Youth and Persons with Disabilities Sindisiwe Chikunga,attended the event.ChinAfrica spoke with her in an exclusive interview about the messages she brought to the meeting,South Africa’s progress in women’s empowerment,how the G20 presidency can contribute to this cause,and China’s role.An edited excerpt of the interview follows.
文摘Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework.
文摘This paper presents an enhanced version of the correlation-driven dual-branch feature decomposition framework(CDDFuse)for fusing low-and high-exposure images captured by the G400BSI sensor.We introduce a novel neural long-term memory(NLM)module into the CDDFuse architecture to improve feature extraction by leveraging persistent global feature representations across image sequences.The proposed method effectively preserves dynamic range and structural details,and is evaluated using a new metric,the ATEF dynamic range preservation index(ATEF-DRPI).Experimental results on a G400BSI dataset demonstrate superior fusion quality,with ATEF-DRPI scores of 0.90,a 12.5%improvement over that of the baseline CDDFuse(0.80),indicating better detail retention in bright and dark regions.This work advances image fusion techniques for extreme lighting conditions,offering improved performance for downstream vision tasks.