Conventional farming-pastoral ecotones methods of delineating were not quantitative and could not fully show their spatial distribution. The present paper attempts to develop quantitative methods for mapping farming-...Conventional farming-pastoral ecotones methods of delineating were not quantitative and could not fully show their spatial distribution. The present paper attempts to develop quantitative methods for mapping farming-pastoral ecotones in China. Nine indicators, related to temperature, precipitation and altitude aspects, were selected to quantify ecological susceptibility of vegetation (crops and forage). Methods of analytic hierarchy process (AHP) and expert score ranking combined with fuzzy set theory were applied to assign the weight for each indicator and to define the membership functions. The geographic information system (GIS) was used to manage the spatial database and conduct the spatial analysis. According to the spatial calculation of evaluation model integrated with GIS, the ecological susceptibility of vegetation (crops and forage) was mapped. Three different zones, pastoral area, farming-pastoral ecotones and farming area, were classified by spatial cluster analysis and the maximum likelihood classification for the numeric map of vegetation ecological susceptibility by GIS. This map was validated by the economic statistical result based on the ratio of the output value from animal husbandry in total output value of agriculture by the National Bureau of Statistics in China, indicating that the mapping of the farming-pastoral ecotones may be accepted.展开更多
Multimedia environmental modeling is extremely complex due to the intricacy of the systems with the consideration of many related factors. Traditional environmental multimedia models (EMMs) are usually based on one-...Multimedia environmental modeling is extremely complex due to the intricacy of the systems with the consideration of many related factors. Traditional environmental multimedia models (EMMs) are usually based on one-dimensional and first-order assumptions, which may cause numerical errors in the simulation results. In this study, a new user-friendly fuzzy-set enhanced environmental multimedia modeling system (FEEMMS) is developed, and includes four key modules: an air dispersion module, a polluting source module, an unsaturated zone module, and a groundwater module. Many improvements over previous EMMs have been achieved through dynamically quantifying the intermedia mass flux; incorporating fuzzy-set approach into environmental multimedia modeling system (EMMS); and designing a user-friendly graphic user interface (GUI). The developed FEEMMS can be a useful tool in estimating the timevarying and spatial-varying chemical concentrations in air, soil, and groundwater; characterizing the potential risk to human health presented by contaminants released from a contaminated site; and quantifying the uncertainties associated with modeling systems and subsequently providing robustness and flexibility for the remediationrelated decision making.展开更多
基金supported by the National Western Special Project (Project No. 2003BA901A20)
文摘Conventional farming-pastoral ecotones methods of delineating were not quantitative and could not fully show their spatial distribution. The present paper attempts to develop quantitative methods for mapping farming-pastoral ecotones in China. Nine indicators, related to temperature, precipitation and altitude aspects, were selected to quantify ecological susceptibility of vegetation (crops and forage). Methods of analytic hierarchy process (AHP) and expert score ranking combined with fuzzy set theory were applied to assign the weight for each indicator and to define the membership functions. The geographic information system (GIS) was used to manage the spatial database and conduct the spatial analysis. According to the spatial calculation of evaluation model integrated with GIS, the ecological susceptibility of vegetation (crops and forage) was mapped. Three different zones, pastoral area, farming-pastoral ecotones and farming area, were classified by spatial cluster analysis and the maximum likelihood classification for the numeric map of vegetation ecological susceptibility by GIS. This map was validated by the economic statistical result based on the ratio of the output value from animal husbandry in total output value of agriculture by the National Bureau of Statistics in China, indicating that the mapping of the farming-pastoral ecotones may be accepted.
基金This work was partially supported by the National Grand Science and Technology Special Project of Water Pollution Control and Improvement (Nos. 2014ZX07204-006 and 2012ZX07210-006) and the National Natural Science Foundation of China (Grant No. 41106108).
文摘Multimedia environmental modeling is extremely complex due to the intricacy of the systems with the consideration of many related factors. Traditional environmental multimedia models (EMMs) are usually based on one-dimensional and first-order assumptions, which may cause numerical errors in the simulation results. In this study, a new user-friendly fuzzy-set enhanced environmental multimedia modeling system (FEEMMS) is developed, and includes four key modules: an air dispersion module, a polluting source module, an unsaturated zone module, and a groundwater module. Many improvements over previous EMMs have been achieved through dynamically quantifying the intermedia mass flux; incorporating fuzzy-set approach into environmental multimedia modeling system (EMMS); and designing a user-friendly graphic user interface (GUI). The developed FEEMMS can be a useful tool in estimating the timevarying and spatial-varying chemical concentrations in air, soil, and groundwater; characterizing the potential risk to human health presented by contaminants released from a contaminated site; and quantifying the uncertainties associated with modeling systems and subsequently providing robustness and flexibility for the remediationrelated decision making.