This article proposes a novel fuzzy virtual force (FVF) method for unmanned aerial vehicle (UAV) path planning in compli-cated environment. An integrated mathematical model of UAV path planning based on virtual fo...This article proposes a novel fuzzy virtual force (FVF) method for unmanned aerial vehicle (UAV) path planning in compli-cated environment. An integrated mathematical model of UAV path planning based on virtual force (VF) is constructed and the corresponding optimal solving method under the given indicators is presented. Specifically,a fixed step method is developed to reduce computational cost and the reachable condition of path planning is proved. The Bayesian belief network and fuzzy logic reasoning theories are applied to setting the path planning parameters adaptively,which can reflect the battlefield situation dy-namically and precisely. A new way of combining threats is proposed to solve the local minima problem completely. Simulation results prove the feasibility and usefulness of using FVF for UAV path planning. Performance comparisons between the FVF method and the A* search algorithm demonstrate that the proposed approach is fast enough to meet the real-time requirements of the online path planning problems.展开更多
基金National Natural Science Foundation of China (60975073)Aeronautical Science Foundation of China (2008ZC13011)+1 种基金Research Foundation for Doctoral Program of Higher Education of China (20091102110006)Fundamental Research Funds for the Central Universities
文摘This article proposes a novel fuzzy virtual force (FVF) method for unmanned aerial vehicle (UAV) path planning in compli-cated environment. An integrated mathematical model of UAV path planning based on virtual force (VF) is constructed and the corresponding optimal solving method under the given indicators is presented. Specifically,a fixed step method is developed to reduce computational cost and the reachable condition of path planning is proved. The Bayesian belief network and fuzzy logic reasoning theories are applied to setting the path planning parameters adaptively,which can reflect the battlefield situation dy-namically and precisely. A new way of combining threats is proposed to solve the local minima problem completely. Simulation results prove the feasibility and usefulness of using FVF for UAV path planning. Performance comparisons between the FVF method and the A* search algorithm demonstrate that the proposed approach is fast enough to meet the real-time requirements of the online path planning problems.