Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain informat...Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain information.To address this challenge,this study presents a novel multi-criteria decision-making(MCDM)approach based on picture fuzzy hypersoft sets(PFHSS),integrating the flexibility of Schweizer-Sklar triangular norm-based aggregation operators.The proposed aggregation mechanisms—weighted average and weighted geometric operators—are formulated using newly defined operational laws under the PFHSS framework and are proven to satisfy essential mathematical properties,such as idempotency,monotonicity,and boundedness.The decision-making model system-atically incorporates both benefit and cost-type criteria,enabling more nuanced evaluations in complex social or environmental decision problems.To enhance interpretability and practical relevance,the study conducts a sensitivity analysis on the Schweizer-Sklar parameter(Δ).The results show that varyingΔaffects the strictness of aggregation,thereby influencing the ranking stability of alternatives.A comparative analysis with existing fuzzy and hypersoft-based MCDM methods confirms the robustness,expressiveness,and adaptability of the proposed approach.Notably,the use of picture fuzzy sets allows for the inclusion of positive,neutral,and negative memberships,offering a richer representation of expert opinions compared to traditional models.A case study focused on green technology adoption for environmental sustainability illustrates the real-world applicability of the proposed method.The analysis confirms that the approach yields consistent and interpretable results,even under varying degrees of decision uncertainty.Overall,this work contributes an efficient and flexible MCDM tool that can support decision-makers in formulating policies aligned with sustainable and socially responsible outcomes.展开更多
Urban transportation planning involves evaluating multiple conflicting criteria such as accessibility,cost-effectiveness,and environmental impact,often under uncertainty and incomplete information.These complex decisi...Urban transportation planning involves evaluating multiple conflicting criteria such as accessibility,cost-effectiveness,and environmental impact,often under uncertainty and incomplete information.These complex decisions require input from various stakeholders,including planners,policymakers,engineers,and community representatives,whose opinions may differ or contradict.Traditional decision-making approaches struggle to effectively handle such bipolar and multivalued expert evaluations.To address these challenges,we propose a novel decisionmaking framework based on Pythagorean fuzzy N-bipolar soft expert sets.This model allows experts to express both positive and negative opinions on a multinary scale,capturing nuanced judgments with higher accuracy.It introduces algebraic operations and a structured aggregation algorithm to systematically integrate and resolve conflicting expert inputs.Applied to a real-world case study,the framework evaluated five urban transport strategies based on key criteria,producing final scores as follows:improving public transit(−0.70),optimizing traffic signal timing(1.86),enhancing pedestrian infrastructure(3.10),expanding bike lanes(0.59),and implementing congestion pricing(0.77).The results clearly identify enhancing pedestrian infrastructure as the most suitable option,having obtained the highest final score of 3.10.Comparative analysis demonstrates the framework’s superior capability in modeling expert consensus,managing uncertainty,and supporting transparent multi-criteria group decision-making.展开更多
This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy ess...This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.展开更多
This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in ...This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges.展开更多
Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling man...Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.展开更多
This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment met...This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.展开更多
Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and furth...As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.展开更多
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma...The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.展开更多
Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM te...Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved.To address this issue,we propose a novel framework that integrates group and overlap functions with Aczel-Alsina(AA)operational laws in the intuitionistic fuzzy set(IFS)environment.Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments,while the Group functions are used to combine different expert opinions into a single collective result.This study introduces four new aggregation operators:Group Overlap function-based intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Averaging(GOF-IFAAWA)operator,intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Geometric(GOF-IFAAWG),intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)OrderedWeighted Averaging(GOF-IFAAOWA),and intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Ordered Weighted Geometric(GOF-IFAAOWG),which are rigorously defined and mathematically analyzed and offer improved flexibility in managing overlapping,uncertain,and hesitant information.The properties of these operators are discussed in detail.Further,the effectiveness,validity,activeness,and ability to capture the uncertain information,the developed operators are applied to the AI-based Criminal Justice Policy Selection problem.At last,the comparison analysis between prior and proposed studies has been displayed,and then followed by the conclusion of the result.展开更多
The implementation of Countermeasure Techniques(CTs)in the context of Network-On-Chip(NoC)based Multiprocessor System-On-Chip(MPSoC)routers against the Flooding Denial-of-Service Attack(F-DoSA)falls under Multi-Criter...The implementation of Countermeasure Techniques(CTs)in the context of Network-On-Chip(NoC)based Multiprocessor System-On-Chip(MPSoC)routers against the Flooding Denial-of-Service Attack(F-DoSA)falls under Multi-Criteria Decision-Making(MCDM)due to the three main concerns,called:traffic variations,multiple evaluation criteria-based traffic features,and prioritization NoC routers as an alternative.In this study,we propose a comprehensive evaluation of various NoC traffic features to identify the most efficient routers under the F-DoSA scenarios.Consequently,an MCDM approach is essential to address these emerging challenges.While the recent MCDM approach has some issues,such as uncertainty,this study utilizes Fuzzy-Weighted Zero-Inconsistency(FWZIC)to estimate the criteria weight values and Fuzzy Decision by Opinion Score Method(FDOSM)for ranking the routers with fuzzy Single-valued Neutrosophic under names(SvN-FWZIC and SvN-FDOSM)to overcome the ambiguity.The results obtained by using the SvN-FWZIC method indicate that the Max packet count has the highest importance among the evaluated criteria,with a weighted score of 0.1946.In contrast,the Hop count is identified as the least significant criterion,with a weighted score of 0.1090.The remaining criteria fall within a range of intermediate importance,with enqueue time scoring 0.1845,packet count decremented and traversal index scoring 0.1262,packet count incremented scoring 0.1124,and packet count index scoring 0.1472.In terms of ranking,SvN-FDOSM has two approaches:individual and group.Both the individual and group ranking processes show that(Router 4)is the most effective router,while(Router 3)is the lowest router under F-DoSA.The sensitivity analysis provides a high stability in ranking among all 10 scenarios.This approach offers essential feedback in making proper decisions in the design of countermeasure techniques in the domain of NoC-based MPSoC.展开更多
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
基金supported by the National Natural Science Foundation of China(No.62172095).
文摘Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life.However,decision-making in such contexts often involves handling vague,imprecise,and uncertain information.To address this challenge,this study presents a novel multi-criteria decision-making(MCDM)approach based on picture fuzzy hypersoft sets(PFHSS),integrating the flexibility of Schweizer-Sklar triangular norm-based aggregation operators.The proposed aggregation mechanisms—weighted average and weighted geometric operators—are formulated using newly defined operational laws under the PFHSS framework and are proven to satisfy essential mathematical properties,such as idempotency,monotonicity,and boundedness.The decision-making model system-atically incorporates both benefit and cost-type criteria,enabling more nuanced evaluations in complex social or environmental decision problems.To enhance interpretability and practical relevance,the study conducts a sensitivity analysis on the Schweizer-Sklar parameter(Δ).The results show that varyingΔaffects the strictness of aggregation,thereby influencing the ranking stability of alternatives.A comparative analysis with existing fuzzy and hypersoft-based MCDM methods confirms the robustness,expressiveness,and adaptability of the proposed approach.Notably,the use of picture fuzzy sets allows for the inclusion of positive,neutral,and negative memberships,offering a richer representation of expert opinions compared to traditional models.A case study focused on green technology adoption for environmental sustainability illustrates the real-world applicability of the proposed method.The analysis confirms that the approach yields consistent and interpretable results,even under varying degrees of decision uncertainty.Overall,this work contributes an efficient and flexible MCDM tool that can support decision-makers in formulating policies aligned with sustainable and socially responsible outcomes.
文摘Urban transportation planning involves evaluating multiple conflicting criteria such as accessibility,cost-effectiveness,and environmental impact,often under uncertainty and incomplete information.These complex decisions require input from various stakeholders,including planners,policymakers,engineers,and community representatives,whose opinions may differ or contradict.Traditional decision-making approaches struggle to effectively handle such bipolar and multivalued expert evaluations.To address these challenges,we propose a novel decisionmaking framework based on Pythagorean fuzzy N-bipolar soft expert sets.This model allows experts to express both positive and negative opinions on a multinary scale,capturing nuanced judgments with higher accuracy.It introduces algebraic operations and a structured aggregation algorithm to systematically integrate and resolve conflicting expert inputs.Applied to a real-world case study,the framework evaluated five urban transport strategies based on key criteria,producing final scores as follows:improving public transit(−0.70),optimizing traffic signal timing(1.86),enhancing pedestrian infrastructure(3.10),expanding bike lanes(0.59),and implementing congestion pricing(0.77).The results clearly identify enhancing pedestrian infrastructure as the most suitable option,having obtained the highest final score of 3.10.Comparative analysis demonstrates the framework’s superior capability in modeling expert consensus,managing uncertainty,and supporting transparent multi-criteria group decision-making.
文摘This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.
文摘This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges.
文摘Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.
基金funded by the Korean Government(MSIT)Grant NRF-2022R1C1C1006671.
文摘This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
文摘As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.
文摘The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.
基金supported by“1 Decembrie 1918”University of Alba Iulia,510009 Alba Iuliasupported in part by the HEC-NRPU project,under the grant No.14566.
文摘Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved.To address this issue,we propose a novel framework that integrates group and overlap functions with Aczel-Alsina(AA)operational laws in the intuitionistic fuzzy set(IFS)environment.Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments,while the Group functions are used to combine different expert opinions into a single collective result.This study introduces four new aggregation operators:Group Overlap function-based intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Averaging(GOF-IFAAWA)operator,intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Geometric(GOF-IFAAWG),intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)OrderedWeighted Averaging(GOF-IFAAOWA),and intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Ordered Weighted Geometric(GOF-IFAAOWG),which are rigorously defined and mathematically analyzed and offer improved flexibility in managing overlapping,uncertain,and hesitant information.The properties of these operators are discussed in detail.Further,the effectiveness,validity,activeness,and ability to capture the uncertain information,the developed operators are applied to the AI-based Criminal Justice Policy Selection problem.At last,the comparison analysis between prior and proposed studies has been displayed,and then followed by the conclusion of the result.
文摘The implementation of Countermeasure Techniques(CTs)in the context of Network-On-Chip(NoC)based Multiprocessor System-On-Chip(MPSoC)routers against the Flooding Denial-of-Service Attack(F-DoSA)falls under Multi-Criteria Decision-Making(MCDM)due to the three main concerns,called:traffic variations,multiple evaluation criteria-based traffic features,and prioritization NoC routers as an alternative.In this study,we propose a comprehensive evaluation of various NoC traffic features to identify the most efficient routers under the F-DoSA scenarios.Consequently,an MCDM approach is essential to address these emerging challenges.While the recent MCDM approach has some issues,such as uncertainty,this study utilizes Fuzzy-Weighted Zero-Inconsistency(FWZIC)to estimate the criteria weight values and Fuzzy Decision by Opinion Score Method(FDOSM)for ranking the routers with fuzzy Single-valued Neutrosophic under names(SvN-FWZIC and SvN-FDOSM)to overcome the ambiguity.The results obtained by using the SvN-FWZIC method indicate that the Max packet count has the highest importance among the evaluated criteria,with a weighted score of 0.1946.In contrast,the Hop count is identified as the least significant criterion,with a weighted score of 0.1090.The remaining criteria fall within a range of intermediate importance,with enqueue time scoring 0.1845,packet count decremented and traversal index scoring 0.1262,packet count incremented scoring 0.1124,and packet count index scoring 0.1472.In terms of ranking,SvN-FDOSM has two approaches:individual and group.Both the individual and group ranking processes show that(Router 4)is the most effective router,while(Router 3)is the lowest router under F-DoSA.The sensitivity analysis provides a high stability in ranking among all 10 scenarios.This approach offers essential feedback in making proper decisions in the design of countermeasure techniques in the domain of NoC-based MPSoC.