The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However,...The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However, there are lots of problems such as little accuracy and instability caused by slow response of hydraulic and various interference factors. Simple proportional integra- tion derivatiation (PID) control method of traditional pulse bench is simple in principle, but it is difficult in parameter adjust- ment. According to the special requirements of the control system, a PID method based on fuzzy control is proposed in the pa- per. This method not only retains the advantages of the conventional control system, but also ameliorates the drawbacks of parameter uncertainty, instability and lag. It has been testified that the method is practicable and can improve the precision and adaptation.展开更多
In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single st...In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.展开更多
Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close t...Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID)-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE) of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.展开更多
In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neura...In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control...An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.展开更多
An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line p...An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.展开更多
The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control Sy...The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.展开更多
This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset pr...This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.展开更多
The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images...The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images requires stable imaging and very precise processing. By installing a camera on a mechanical arm driven by motor, the maintenance of accuracy and stability becomes non-trivial. As per the state-of-the-art, the issue of external camera shake incurred due to vibration is a great concern in capturing accurate images, which may be induced by the driving motor of the manipulator. So, there is a requirement for a stable active controller for sufficient vibration attenuation of the manipulator. However, there are very few reports in agricultural practices which use control algorithms. Although, many control strategies have been utilized to control the vibration in manipulators associated to various applications, no control strategy with validated stability has been provided to control the vibration in such envisioned agricultural manipulator with simple low-cost hardware devices with the compensation of non-linearities. So, in this work, the combination of proportional-integral-differential(PID) control with type-2 fuzzy logic(T2-F-PID) is implemented for vibration control. The validation of the controller stability using Lyapunov analysis is established. A torsional actuator(TA) is applied for mitigating torsional vibration, which is a new contribution in the area of agricultural manipulators. Also, to prove the effectiveness of the controller, the vibration attenuation results with T2-F-PID is compared with conventional PD/PID controllers, and a type-1 fuzzy PID(T1-F-PID) controller.展开更多
The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many ...The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.展开更多
The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the ...The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the turbine speed can't meet the control demand.This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance.The simulation shows the improvement of the response time and steady state performance of the control system.展开更多
Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time...Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.展开更多
A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused...A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.展开更多
基金High Level Talented Person Funded Project of Hebei Province(No.C2013005003)Excellent Experts for Going Abroad Training Program of Hebei Province(No.10215601D)
文摘The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However, there are lots of problems such as little accuracy and instability caused by slow response of hydraulic and various interference factors. Simple proportional integra- tion derivatiation (PID) control method of traditional pulse bench is simple in principle, but it is difficult in parameter adjust- ment. According to the special requirements of the control system, a PID method based on fuzzy control is proposed in the pa- per. This method not only retains the advantages of the conventional control system, but also ameliorates the drawbacks of parameter uncertainty, instability and lag. It has been testified that the method is practicable and can improve the precision and adaptation.
基金Item Sponsored by National Natural Science Foundation of China (50634030)
文摘In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.
基金co-supported by the National Natural Science Foundation of China (61175104)National Science and Technology Support Program of China (2012BA114B01)
文摘Shape memory alloy (SMA) actuator is a potential advanced component for servo- systems of aerospace vehicles and aircraft. This paper presents a joint with two degrees of freedom (DOF) and a mobility range close to ±60° when driven by SMA triple wires. The fuzzy proportional-integral-derivative (PID)-controlled actuator drive was designed using antagonistic SMA triple wires, and the resistance feedback signal made a closed loop. Experiments showed that, with the driving responding frequency increasing, the overstress became harder to be avoided at the position under the maximum friction force. Furthermore, the hysteresis gap between the heating and cooling paths of the strain-to-resistance curve expanded under this condition. A fuzzy logic control was considered as a solution, and the curves of the wires were then modeled by fitting polynomials so that the measured resistance was used directly to determine the control signal. Accurate control was demonstrated through the step response, and the experimental results showed that under the fuzzy PID-control program, the mean absolute error (MAE) of the rotation angle was about 3.147°. In addition, the investigation of the external interference to the system proved the controllable maximum output.
基金Sponsored by National High-tech Research and Development Project of China(2009AA04Z143)Natural Science Foundation of Hebei Province of China(E2006001038)Science and Technology Project of Hebei Province of China(10212101D)
文摘In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
基金Project(70473068) supported by the National Natural Science Foundation of ChinaProject(05JZD00024) supported by the Major Subject of Ministry of Education, China
文摘An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.
基金Project (50275150) supported by the National Natural Science Foundation of ChinaProject (RL200002) supported by the Foundation of the Robotics Laboratory, Chinese Academy of Sciences
文摘An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.
文摘The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.
文摘This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.
文摘The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images requires stable imaging and very precise processing. By installing a camera on a mechanical arm driven by motor, the maintenance of accuracy and stability becomes non-trivial. As per the state-of-the-art, the issue of external camera shake incurred due to vibration is a great concern in capturing accurate images, which may be induced by the driving motor of the manipulator. So, there is a requirement for a stable active controller for sufficient vibration attenuation of the manipulator. However, there are very few reports in agricultural practices which use control algorithms. Although, many control strategies have been utilized to control the vibration in manipulators associated to various applications, no control strategy with validated stability has been provided to control the vibration in such envisioned agricultural manipulator with simple low-cost hardware devices with the compensation of non-linearities. So, in this work, the combination of proportional-integral-differential(PID) control with type-2 fuzzy logic(T2-F-PID) is implemented for vibration control. The validation of the controller stability using Lyapunov analysis is established. A torsional actuator(TA) is applied for mitigating torsional vibration, which is a new contribution in the area of agricultural manipulators. Also, to prove the effectiveness of the controller, the vibration attenuation results with T2-F-PID is compared with conventional PD/PID controllers, and a type-1 fuzzy PID(T1-F-PID) controller.
文摘The design of intelligent control systems has become an area of intense research interest. The development of an effective methodology for the design of such control systems undoubtedly requires the synthesis of many concepts from artificial intelligence. The most commonly used controller in the industry field is the proportional-plus-integral-plus-derivative (PID) controller. Fuzzy logic controller (FLC) provides an alternative to PID controller, especially when the available system models are inexact or unavailable. Also rapid advances in digital technologies have given designers the option of implementing controllers using Field Programmable Gate Array (FPGA) which depends on parallel programming. This method has many advantages over classical microprocessors. In this research, A model of the fuzzy PID control system is implemented in real time with a Xilinx FPGA (Spartan-3A, Xilinx Company, 2007). It is introduced to maintain a constant speed to when the load varies.,The model of a DC motor is considered as a second order system with load variation as a an example for complex model systems. For comparison purpose, two widely used controllers “PID and Fuzzy” have been implemented in the same FPGA card to examine the performance of the proposed system. These controllers have been tested using Matlab/Simulink program under speed and load variation conditions. The controllers were implemented to run the motor as real time application under speed and load variation conditions and showed the superiority of Fuzzy-PID.
文摘The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the turbine speed can't meet the control demand.This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance.The simulation shows the improvement of the response time and steady state performance of the control system.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.
文摘A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.