The seabed oil gas pipeline network is simplified to a network with stochastic edge weight by means of the fuzzy graphics theory. With the help of network analysis, fuzzy mathematics, and stochastic theory, the prob...The seabed oil gas pipeline network is simplified to a network with stochastic edge weight by means of the fuzzy graphics theory. With the help of network analysis, fuzzy mathematics, and stochastic theory, the problem of reliability analysis for the seabed oil gas pipeline network under earthquakes is transformed into the calculation of the transitive closure of fuzzy matrix of the stochastic fuzzy network. In classical network reliability analysis, the node is supposed to be non invalidated; in this paper, this premise is modified by introducing a disposal method which has taken the possible invalidated node into account. A good result is obtained by use of the Monte Carlo simulation analysis.展开更多
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
Bayesian network( BN) is a powerful tool of uncertainty reasoning. Considering the insufficient information,incorporating fuzzy probability into BN is an effective method. Fuzzy BN was used to solve this problem. In t...Bayesian network( BN) is a powerful tool of uncertainty reasoning. Considering the insufficient information,incorporating fuzzy probability into BN is an effective method. Fuzzy BN was used to solve this problem. In this paper,fuzzy BN was applied in wafer stage system,which was an important part of lithography. BN of wafer stage was transferred from fault tree( FT). The quantitative assessment based on fuzzy BN was carried out. The Birnbaum importance factors of basic events were calculated. Therefore,the system failure probability and the vulnerable components could be gotten.展开更多
The integration of the Internet of Things(IoT)into healthcare systems improves patient care,boosts operational efficiency,and contributes to cost-effective healthcare delivery.However,overcoming several associated cha...The integration of the Internet of Things(IoT)into healthcare systems improves patient care,boosts operational efficiency,and contributes to cost-effective healthcare delivery.However,overcoming several associated challenges,such as data security,interoperability,and ethical concerns,is crucial to realizing the full potential of IoT in healthcare.Real-time anomaly detection plays a key role in protecting patient data and maintaining device integrity amidst the additional security risks posed by interconnected systems.In this context,this paper presents a novelmethod for healthcare data privacy analysis.The technique is based on the identification of anomalies in cloud-based Internet of Things(IoT)networks,and it is optimized using explainable artificial intelligence.For anomaly detection,the Radial Boltzmann Gaussian Temporal Fuzzy Network(RBGTFN)is used in the process of doing information privacy analysis for healthcare data.Remora Colony SwarmOptimization is then used to carry out the optimization of the network.The performance of the model in identifying anomalies across a variety of healthcare data is evaluated by an experimental study.This evaluation suggested that themodel measures the accuracy,precision,latency,Quality of Service(QoS),and scalability of themodel.A remarkable 95%precision,93%latency,89%quality of service,98%detection accuracy,and 96%scalability were obtained by the suggested model,as shown by the subsequent findings.展开更多
This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurr...This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model.展开更多
In this paper, a new systematic methed of quantitative DFA is presented based on the function analysis.The reduction of the number of components forming product is realized by incorporating some parts as the features ...In this paper, a new systematic methed of quantitative DFA is presented based on the function analysis.The reduction of the number of components forming product is realized by incorporating some parts as the features of others. In order to evaluate assemblability of a product objectively, accurately and completely, the factors affecting assembability have been identified in terms of the production mode used to assemble product, and neural network and fuzzy set theory are adopted to quantify the effect of factors on assemblability. A case study is given, and the results demonstrate the effectiveness and validity of the method.展开更多
Presents a fast and effective method proposed by combining the fuzzy C means (FCM) and the fuzzy neural network for solving robot inverse kinematics, and its successful application to the robot inverse kinematics and ...Presents a fast and effective method proposed by combining the fuzzy C means (FCM) and the fuzzy neural network for solving robot inverse kinematics, and its successful application to the robot inverse kinematics and concludes from simulation results that this new method not only has high efficiency and accuracy, but also good generalization, and it also overcomes the "dimension disaster" of fuzzy set in a fuzzy neural network fairly well.展开更多
Urban buildings and urban traffic network are considered as the vital arteries of cities which have particular effects especially after the crisis in the search and rescue operations. The aim of this study is to deter...Urban buildings and urban traffic network are considered as the vital arteries of cities which have particular effects especially after the crisis in the search and rescue operations. The aim of this study is to determine the vulnerability of urban areas especially, buildings and traffic networks using multicriteria geographic information systems and decisionmaking methods. As there are many effective criteria on the seismic vulnerability that they have uncertain and vague properties, the method of this paper is applying fuzzy ordered weighted average(OWA) to model the seismic vulnerability of urban buildings and traffic networks in the most optimistic and pessimistic states. The study area is district 6 of Tehran that is affected by the four major faults, and thus will be threatened by the earthquakes. The achieved results illustrated the vulnerability with different degrees of risk levels including very high, high, medium, low and very low. The results show that in the most optimistic case 14% and in the pessimistic case 1% of buildings tolerate in very low vulnerability. The vulnerability of urban street network also indicates that in the optimistic case 12% and in the pessimistic case at most 9% of the area are in appropriate condition and the North and NorthEast of the study area are more vulnerable than South of it.展开更多
Sentiment analysis or Opinion Mining (OM) has gained significant interest among research communities and entrepreneurs in the recentyears. Likewise, Machine Learning (ML) approaches is one of the interestingresearch d...Sentiment analysis or Opinion Mining (OM) has gained significant interest among research communities and entrepreneurs in the recentyears. Likewise, Machine Learning (ML) approaches is one of the interestingresearch domains that are highly helpful and are increasingly applied in severalbusiness domains. In this background, the current research paper focuses onthe design of automated opinion mining model using Deer Hunting Optimization Algorithm (DHOA) with Fuzzy Neural Network (FNN) abbreviatedas DHOA-FNN model. The proposed DHOA-FNN technique involves fourdifferent stages namely, preprocessing, feature extraction, classification, andparameter tuning. In addition to the above, the proposed DHOA-FNN modelhas two stages of feature extraction namely, Glove and N-gram approach.Moreover, FNN model is utilized as a classification model whereas GTOA isused for the optimization of parameters. The novelty of current work is thatthe GTOA is designed to tune the parameters of FNN model. An extensiverange of simulations was carried out on the benchmark dataset and the resultswere examined under diverse measures. The experimental results highlightedthe promising performance of DHOA-FNN model over recent state-of-the-arttechniques with a maximum accuracy of 0.9928.展开更多
The coastal marine habitats are often characterized by high biological activity. Therefore, monitoring programs and conservation plans of coastal environments are needed. So, in order to contribute to decision making ...The coastal marine habitats are often characterized by high biological activity. Therefore, monitoring programs and conservation plans of coastal environments are needed. So, in order to contribute to decision making process of the Brazilian Information System of Coastal Management, this paper presents a preliminary analysis of the effects of simulated deletions of individual organisms within a planktonic network as knowledge acquisition platform. An in situ scanning flow cytometer was used to data acquisition. A static and undirected food web is generated and represented by a fuzzy graph structure. Our results show through a series of indices the main changes of these networks. It was also verified similar traits and properties with other food webs found in the literature.展开更多
Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The a...Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance.展开更多
针对传统方法子指标的不确定性问题,提出了一种基于三角直觉模糊网络分析法(triangular intuitionistic fuzzy analytic network process,TIFANP)、优劣解距离法(technique for order preference by similarity to an ideal solution,TO...针对传统方法子指标的不确定性问题,提出了一种基于三角直觉模糊网络分析法(triangular intuitionistic fuzzy analytic network process,TIFANP)、优劣解距离法(technique for order preference by similarity to an ideal solution,TOPSIS)和三角直觉模糊综合评价(triangular intuitionistic fuzzy comprehensive evaluation,TIFCE)的大跨桥梁安全状态评估方法。首先,建立大跨桥梁安全状态分层指标体系,采用TIFANP法确定考虑指标相互影响后的权重;其次,引入TOPSIS法分配指标各截面权重,进而获得子指标取值;然后,将桥梁安全状态划分为5级,通过TIFCE法构建指标在不同等级的隶属度和非隶属度函数,据此建立对应判断矩阵,并进行桥梁安全状态指数综合计算;最后,以某大跨悬索桥监测数据为依托,验证了所提方法的有效性。结果表明:所提方法能够更合理地处理评价指标间的相互影响以及专家评分时的不确定,可为运营期大跨桥梁安全状态的准确评估提供新思路。展开更多
文摘The seabed oil gas pipeline network is simplified to a network with stochastic edge weight by means of the fuzzy graphics theory. With the help of network analysis, fuzzy mathematics, and stochastic theory, the problem of reliability analysis for the seabed oil gas pipeline network under earthquakes is transformed into the calculation of the transitive closure of fuzzy matrix of the stochastic fuzzy network. In classical network reliability analysis, the node is supposed to be non invalidated; in this paper, this premise is modified by introducing a disposal method which has taken the possible invalidated node into account. A good result is obtained by use of the Monte Carlo simulation analysis.
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
基金the Fundamental Research Funds for the Central Universities,China(Nos.ZYGX2011J090,ZYGX2011J084)
文摘Bayesian network( BN) is a powerful tool of uncertainty reasoning. Considering the insufficient information,incorporating fuzzy probability into BN is an effective method. Fuzzy BN was used to solve this problem. In this paper,fuzzy BN was applied in wafer stage system,which was an important part of lithography. BN of wafer stage was transferred from fault tree( FT). The quantitative assessment based on fuzzy BN was carried out. The Birnbaum importance factors of basic events were calculated. Therefore,the system failure probability and the vulnerable components could be gotten.
基金funded by Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah under grant No.(RG-6-611-43)the authors,therefore,acknowledge with thanks DSR technical and financial support.
文摘The integration of the Internet of Things(IoT)into healthcare systems improves patient care,boosts operational efficiency,and contributes to cost-effective healthcare delivery.However,overcoming several associated challenges,such as data security,interoperability,and ethical concerns,is crucial to realizing the full potential of IoT in healthcare.Real-time anomaly detection plays a key role in protecting patient data and maintaining device integrity amidst the additional security risks posed by interconnected systems.In this context,this paper presents a novelmethod for healthcare data privacy analysis.The technique is based on the identification of anomalies in cloud-based Internet of Things(IoT)networks,and it is optimized using explainable artificial intelligence.For anomaly detection,the Radial Boltzmann Gaussian Temporal Fuzzy Network(RBGTFN)is used in the process of doing information privacy analysis for healthcare data.Remora Colony SwarmOptimization is then used to carry out the optimization of the network.The performance of the model in identifying anomalies across a variety of healthcare data is evaluated by an experimental study.This evaluation suggested that themodel measures the accuracy,precision,latency,Quality of Service(QoS),and scalability of themodel.A remarkable 95%precision,93%latency,89%quality of service,98%detection accuracy,and 96%scalability were obtained by the suggested model,as shown by the subsequent findings.
基金This project is funded bythe UK Engineering and Physical Sciences Research Council (EPSRC) under Grant Refer-ences:GR/S85504 and GR/S85498
文摘This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model.
文摘In this paper, a new systematic methed of quantitative DFA is presented based on the function analysis.The reduction of the number of components forming product is realized by incorporating some parts as the features of others. In order to evaluate assemblability of a product objectively, accurately and completely, the factors affecting assembability have been identified in terms of the production mode used to assemble product, and neural network and fuzzy set theory are adopted to quantify the effect of factors on assemblability. A case study is given, and the results demonstrate the effectiveness and validity of the method.
文摘Presents a fast and effective method proposed by combining the fuzzy C means (FCM) and the fuzzy neural network for solving robot inverse kinematics, and its successful application to the robot inverse kinematics and concludes from simulation results that this new method not only has high efficiency and accuracy, but also good generalization, and it also overcomes the "dimension disaster" of fuzzy set in a fuzzy neural network fairly well.
文摘Urban buildings and urban traffic network are considered as the vital arteries of cities which have particular effects especially after the crisis in the search and rescue operations. The aim of this study is to determine the vulnerability of urban areas especially, buildings and traffic networks using multicriteria geographic information systems and decisionmaking methods. As there are many effective criteria on the seismic vulnerability that they have uncertain and vague properties, the method of this paper is applying fuzzy ordered weighted average(OWA) to model the seismic vulnerability of urban buildings and traffic networks in the most optimistic and pessimistic states. The study area is district 6 of Tehran that is affected by the four major faults, and thus will be threatened by the earthquakes. The achieved results illustrated the vulnerability with different degrees of risk levels including very high, high, medium, low and very low. The results show that in the most optimistic case 14% and in the pessimistic case 1% of buildings tolerate in very low vulnerability. The vulnerability of urban street network also indicates that in the optimistic case 12% and in the pessimistic case at most 9% of the area are in appropriate condition and the North and NorthEast of the study area are more vulnerable than South of it.
基金Taif University Researchers Supporting Project Number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘Sentiment analysis or Opinion Mining (OM) has gained significant interest among research communities and entrepreneurs in the recentyears. Likewise, Machine Learning (ML) approaches is one of the interestingresearch domains that are highly helpful and are increasingly applied in severalbusiness domains. In this background, the current research paper focuses onthe design of automated opinion mining model using Deer Hunting Optimization Algorithm (DHOA) with Fuzzy Neural Network (FNN) abbreviatedas DHOA-FNN model. The proposed DHOA-FNN technique involves fourdifferent stages namely, preprocessing, feature extraction, classification, andparameter tuning. In addition to the above, the proposed DHOA-FNN modelhas two stages of feature extraction namely, Glove and N-gram approach.Moreover, FNN model is utilized as a classification model whereas GTOA isused for the optimization of parameters. The novelty of current work is thatthe GTOA is designed to tune the parameters of FNN model. An extensiverange of simulations was carried out on the benchmark dataset and the resultswere examined under diverse measures. The experimental results highlightedthe promising performance of DHOA-FNN model over recent state-of-the-arttechniques with a maximum accuracy of 0.9928.
文摘The coastal marine habitats are often characterized by high biological activity. Therefore, monitoring programs and conservation plans of coastal environments are needed. So, in order to contribute to decision making process of the Brazilian Information System of Coastal Management, this paper presents a preliminary analysis of the effects of simulated deletions of individual organisms within a planktonic network as knowledge acquisition platform. An in situ scanning flow cytometer was used to data acquisition. A static and undirected food web is generated and represented by a fuzzy graph structure. Our results show through a series of indices the main changes of these networks. It was also verified similar traits and properties with other food webs found in the literature.
基金the National Key R&D Program of China under Grant 2018YFB1700104.
文摘Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance.
文摘针对传统方法子指标的不确定性问题,提出了一种基于三角直觉模糊网络分析法(triangular intuitionistic fuzzy analytic network process,TIFANP)、优劣解距离法(technique for order preference by similarity to an ideal solution,TOPSIS)和三角直觉模糊综合评价(triangular intuitionistic fuzzy comprehensive evaluation,TIFCE)的大跨桥梁安全状态评估方法。首先,建立大跨桥梁安全状态分层指标体系,采用TIFANP法确定考虑指标相互影响后的权重;其次,引入TOPSIS法分配指标各截面权重,进而获得子指标取值;然后,将桥梁安全状态划分为5级,通过TIFCE法构建指标在不同等级的隶属度和非隶属度函数,据此建立对应判断矩阵,并进行桥梁安全状态指数综合计算;最后,以某大跨悬索桥监测数据为依托,验证了所提方法的有效性。结果表明:所提方法能够更合理地处理评价指标间的相互影响以及专家评分时的不确定,可为运营期大跨桥梁安全状态的准确评估提供新思路。