期刊文献+
共找到630篇文章
< 1 2 32 >
每页显示 20 50 100
Fuzzy Reliability Analysis for Seabed Oil Gas Pipeline Networks Under Earthquakes 被引量:2
1
作者 刘震 潘斌 《海洋工程:英文版》 2003年第1期83-92,共10页
The seabed oil gas pipeline network is simplified to a network with stochastic edge weight by means of the fuzzy graphics theory. With the help of network analysis, fuzzy mathematics, and stochastic theory, the prob... The seabed oil gas pipeline network is simplified to a network with stochastic edge weight by means of the fuzzy graphics theory. With the help of network analysis, fuzzy mathematics, and stochastic theory, the problem of reliability analysis for the seabed oil gas pipeline network under earthquakes is transformed into the calculation of the transitive closure of fuzzy matrix of the stochastic fuzzy network. In classical network reliability analysis, the node is supposed to be non invalidated; in this paper, this premise is modified by introducing a disposal method which has taken the possible invalidated node into account. A good result is obtained by use of the Monte Carlo simulation analysis. 展开更多
关键词 fuzzy graphics seabed pipeline network graphics theory reliability analysis
在线阅读 下载PDF
A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model 被引量:6
2
作者 ZHANG Zeguo YIN Jianchuan +2 位作者 WANG Nini HU Jiangqiang WANG Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期94-105,共12页
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat... An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability. 展开更多
关键词 tidal level prediction harmonious analysis method adaptive network-based fuzzy inference system correlation analysis
在线阅读 下载PDF
Reliability Analysis of Lithography Wafer Stage Based on Fuzzy Bayesian Networks
3
作者 韩晓萌 李彦锋 +1 位作者 刘宇 黄洪钟 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期753-756,共4页
Bayesian network( BN) is a powerful tool of uncertainty reasoning. Considering the insufficient information,incorporating fuzzy probability into BN is an effective method. Fuzzy BN was used to solve this problem. In t... Bayesian network( BN) is a powerful tool of uncertainty reasoning. Considering the insufficient information,incorporating fuzzy probability into BN is an effective method. Fuzzy BN was used to solve this problem. In this paper,fuzzy BN was applied in wafer stage system,which was an important part of lithography. BN of wafer stage was transferred from fault tree( FT). The quantitative assessment based on fuzzy BN was carried out. The Birnbaum importance factors of basic events were calculated. Therefore,the system failure probability and the vulnerable components could be gotten. 展开更多
关键词 LITHOGRAPHY wafer stage fuzzy Bayesian network(BN) reliability analysis
在线阅读 下载PDF
Enhancing Healthcare Data Privacy in Cloud IoT Networks Using Anomaly Detection and Optimization with Explainable AI (ExAI)
4
作者 Jitendra Kumar Samriya Virendra Singh +4 位作者 Gourav Bathla Meena Malik Varsha Arya Wadee Alhalabi Brij B.Gupta 《Computers, Materials & Continua》 2025年第8期3893-3910,共18页
The integration of the Internet of Things(IoT)into healthcare systems improves patient care,boosts operational efficiency,and contributes to cost-effective healthcare delivery.However,overcoming several associated cha... The integration of the Internet of Things(IoT)into healthcare systems improves patient care,boosts operational efficiency,and contributes to cost-effective healthcare delivery.However,overcoming several associated challenges,such as data security,interoperability,and ethical concerns,is crucial to realizing the full potential of IoT in healthcare.Real-time anomaly detection plays a key role in protecting patient data and maintaining device integrity amidst the additional security risks posed by interconnected systems.In this context,this paper presents a novelmethod for healthcare data privacy analysis.The technique is based on the identification of anomalies in cloud-based Internet of Things(IoT)networks,and it is optimized using explainable artificial intelligence.For anomaly detection,the Radial Boltzmann Gaussian Temporal Fuzzy Network(RBGTFN)is used in the process of doing information privacy analysis for healthcare data.Remora Colony SwarmOptimization is then used to carry out the optimization of the network.The performance of the model in identifying anomalies across a variety of healthcare data is evaluated by an experimental study.This evaluation suggested that themodel measures the accuracy,precision,latency,Quality of Service(QoS),and scalability of themodel.A remarkable 95%precision,93%latency,89%quality of service,98%detection accuracy,and 96%scalability were obtained by the suggested model,as shown by the subsequent findings. 展开更多
关键词 Healthcare data privacy analysis anomaly detection cloud IoT network explainable artificial intelligence temporal fuzzy network
在线阅读 下载PDF
A Bayesian Network Approach for Offshore Risk Analysis Through Linguistic Variables 被引量:4
5
作者 Ren J. Wang J. +2 位作者 Jenkinson I. Xu D. L. Yang J. B. 《China Ocean Engineering》 SCIE EI 2007年第3期371-388,共18页
This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurr... This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model. 展开更多
关键词 Risk analysis fiweighted valuation function Bayesian networks fuzzy number linguistic probability off-shore engineering systems
在线阅读 下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
6
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
在线阅读 下载PDF
基于FUZZY-BN-FTA的厂区架空燃气管道泄漏可能性研究 被引量:3
7
作者 杨斯涵 许开立 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第2期82-89,共8页
为研究厂区架空燃气管道泄漏的故的可能性,提出模糊数学方法、贝叶斯网络模型以及故障树模型相结合的集成模型。通过GeNIe软件建立架空燃气管道泄漏事故的模糊贝叶斯网络模型;引入Leaky Noisy-or Gate扩展模型对模糊贝叶斯网络中节点的... 为研究厂区架空燃气管道泄漏的故的可能性,提出模糊数学方法、贝叶斯网络模型以及故障树模型相结合的集成模型。通过GeNIe软件建立架空燃气管道泄漏事故的模糊贝叶斯网络模型;引入Leaky Noisy-or Gate扩展模型对模糊贝叶斯网络中节点的条件概率表进行修正,结合基本事件先验概率预测架空燃气管道泄漏的概率值,并引入3个基本事件重要度确定基本事件的重要性排序,同时进行敏感性分析确定主要影响因素,提出控制措施。研究结果表明:厂区车辆撞击、管道疲劳损耗、管材质量不佳、安装设计不合理、焊接缺陷为导致架空燃气管道泄漏的主要因素。研究结果可为工业企业安全管理人员有针对性地制定控制措施,减少事故发生率提供参考。 展开更多
关键词 架空燃气管道泄漏 可能性分析 贝叶斯网络 梯形模糊数 Leaky Noisy-or Gate扩展模型
在线阅读 下载PDF
A Quantitative DFA Method Based on Neural Network and Function Analysis
8
作者 顾廷权 高国安 卞瑞花 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第4期15-18,共4页
In this paper, a new systematic methed of quantitative DFA is presented based on the function analysis.The reduction of the number of components forming product is realized by incorporating some parts as the features ... In this paper, a new systematic methed of quantitative DFA is presented based on the function analysis.The reduction of the number of components forming product is realized by incorporating some parts as the features of others. In order to evaluate assemblability of a product objectively, accurately and completely, the factors affecting assembability have been identified in terms of the production mode used to assemble product, and neural network and fuzzy set theory are adopted to quantify the effect of factors on assemblability. A case study is given, and the results demonstrate the effectiveness and validity of the method. 展开更多
关键词 DFA ASSEMBLABILITY NEURAL network function analysis fuzzy SET theory
在线阅读 下载PDF
Robot inverse kinematics based on FCM and fuzzy-neural network
9
作者 王强 麻亮 +1 位作者 强文义 傅佩琛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第2期184-187,共4页
Presents a fast and effective method proposed by combining the fuzzy C means (FCM) and the fuzzy neural network for solving robot inverse kinematics, and its successful application to the robot inverse kinematics and ... Presents a fast and effective method proposed by combining the fuzzy C means (FCM) and the fuzzy neural network for solving robot inverse kinematics, and its successful application to the robot inverse kinematics and concludes from simulation results that this new method not only has high efficiency and accuracy, but also good generalization, and it also overcomes the "dimension disaster" of fuzzy set in a fuzzy neural network fairly well. 展开更多
关键词 fuzzy neural network fuzzy C means analysis robot inverse kinematics
在线阅读 下载PDF
Seismic vulnerability assessment of urban buildings and traffic networks using fuzzy ordered weighted average 被引量:1
10
作者 Yasaman ASADI Najmeh Neysani SAMANY Keyvan EZIMAND 《Journal of Mountain Science》 SCIE CSCD 2019年第3期677-688,共12页
Urban buildings and urban traffic network are considered as the vital arteries of cities which have particular effects especially after the crisis in the search and rescue operations. The aim of this study is to deter... Urban buildings and urban traffic network are considered as the vital arteries of cities which have particular effects especially after the crisis in the search and rescue operations. The aim of this study is to determine the vulnerability of urban areas especially, buildings and traffic networks using multicriteria geographic information systems and decisionmaking methods. As there are many effective criteria on the seismic vulnerability that they have uncertain and vague properties, the method of this paper is applying fuzzy ordered weighted average(OWA) to model the seismic vulnerability of urban buildings and traffic networks in the most optimistic and pessimistic states. The study area is district 6 of Tehran that is affected by the four major faults, and thus will be threatened by the earthquakes. The achieved results illustrated the vulnerability with different degrees of risk levels including very high, high, medium, low and very low. The results show that in the most optimistic case 14% and in the pessimistic case 1% of buildings tolerate in very low vulnerability. The vulnerability of urban street network also indicates that in the optimistic case 12% and in the pessimistic case at most 9% of the area are in appropriate condition and the North and NorthEast of the study area are more vulnerable than South of it. 展开更多
关键词 Earthquake Vulnerability Assessment URBAN BUILDINGS Traffic network MULTI-CRITERIA Decision analysis(MCDA) fuzzy-OWA
原文传递
Design of Automated Opinion Mining Model Using Optimized Fuzzy Neural Network
11
作者 Ala’A.Eshmawi Hesham Alhumyani +3 位作者 Sayed Abdel Khalek Rashid A.Saeed Mahmoud Ragab Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2022年第5期2543-2557,共15页
Sentiment analysis or Opinion Mining (OM) has gained significant interest among research communities and entrepreneurs in the recentyears. Likewise, Machine Learning (ML) approaches is one of the interestingresearch d... Sentiment analysis or Opinion Mining (OM) has gained significant interest among research communities and entrepreneurs in the recentyears. Likewise, Machine Learning (ML) approaches is one of the interestingresearch domains that are highly helpful and are increasingly applied in severalbusiness domains. In this background, the current research paper focuses onthe design of automated opinion mining model using Deer Hunting Optimization Algorithm (DHOA) with Fuzzy Neural Network (FNN) abbreviatedas DHOA-FNN model. The proposed DHOA-FNN technique involves fourdifferent stages namely, preprocessing, feature extraction, classification, andparameter tuning. In addition to the above, the proposed DHOA-FNN modelhas two stages of feature extraction namely, Glove and N-gram approach.Moreover, FNN model is utilized as a classification model whereas GTOA isused for the optimization of parameters. The novelty of current work is thatthe GTOA is designed to tune the parameters of FNN model. An extensiverange of simulations was carried out on the benchmark dataset and the resultswere examined under diverse measures. The experimental results highlightedthe promising performance of DHOA-FNN model over recent state-of-the-arttechniques with a maximum accuracy of 0.9928. 展开更多
关键词 Opinion mining sentiment analysis fuzzy neural network metaheuristics feature extraction CLASSIFICATION
在线阅读 下载PDF
Structural Analysis and Static Simulation of Coastal Planktonic Networks
12
作者 Gilberto C. Pereira Lúcio P. Andrade +1 位作者 Rogério P. Espíndola Nelson F. F. Ebecken 《Journal of Intelligent Learning Systems and Applications》 2014年第2期113-124,共12页
The coastal marine habitats are often characterized by high biological activity. Therefore, monitoring programs and conservation plans of coastal environments are needed. So, in order to contribute to decision making ... The coastal marine habitats are often characterized by high biological activity. Therefore, monitoring programs and conservation plans of coastal environments are needed. So, in order to contribute to decision making process of the Brazilian Information System of Coastal Management, this paper presents a preliminary analysis of the effects of simulated deletions of individual organisms within a planktonic network as knowledge acquisition platform. An in situ scanning flow cytometer was used to data acquisition. A static and undirected food web is generated and represented by a fuzzy graph structure. Our results show through a series of indices the main changes of these networks. It was also verified similar traits and properties with other food webs found in the literature. 展开更多
关键词 ENVIRONMENTAL Monitoring fuzzy GRAPH networkS analysis FOOD Web Structure Impact Assessment
暂未订购
Alternative Method of Constructing Granular Neural Networks
13
作者 Yushan Yin Witold Pedrycz Zhiwu Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期623-650,共28页
Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The a... Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance. 展开更多
关键词 Granular neural network granular connection interval analysis triangular fuzzy numbers particle swarm optimization(PSO)
在线阅读 下载PDF
区域旅游业绿色创新发展网络优势匹配与组态提升路径——以山东半岛城市群为例
14
作者 刘佳 申明哲 +3 位作者 安珂珂 闫颖 王灵恩 赵青华 《生态学报》 北大核心 2025年第2期493-510,共18页
人与自然和谐共生背景下,绿色创新作为旅游业绿色化转型的重要引擎,是对旅游发展方式转变和生态环境问题改善的积极回应,直接关系到旅游业经济增长与资源环境的协调发展。频繁的要素流动推动城市间绿色创新联系增强,探究区域旅游业绿色... 人与自然和谐共生背景下,绿色创新作为旅游业绿色化转型的重要引擎,是对旅游发展方式转变和生态环境问题改善的积极回应,直接关系到旅游业经济增长与资源环境的协调发展。频繁的要素流动推动城市间绿色创新联系增强,探究区域旅游业绿色创新网络优势匹配的路径有助于因地施策推进区域旅游业可持续发展。探索构建区域旅游业绿色创新发展分析框架,综合运用超效率SBM模型、社会网络分析法、哈肯模型和核密度估计等方法,选择山东半岛城市群为研究案例地,测度和分析其旅游业绿色创新效率及其网络优势度和二者协同特征,进一步基于非对称创新理论和模糊集定性比较分析法识别区域旅游业绿色创新发展网络优势匹配的组态路径。研究发现:旅游业绿色创新效率在空间上具有“沿海沿边”的集聚分布规律;旅游业绿色创新效率网络优势度“马太效应”显著,形成以济南、东营为主的点状格局;二者协同度区域差异明显,可分为高度协同型、中度协同型和低度协同型3大类;旅游业绿色创新效率、网络优势度及二者匹配的提升路径可归纳为政府支撑的外向型市场拓展模式、政府扶持的内源型动力驱动模式和内外部环境双元驱动下的动态优化调整模式等7种。 展开更多
关键词 旅游业绿色创新效率 网络优势度 社会网络分析 哈肯模型 模糊集定性比较分析 山东半岛城市群
在线阅读 下载PDF
基于模糊Markov博弈算法的网络潜在攻击监测
15
作者 胡斌 王越 +1 位作者 杨浩 马平 《吉林大学学报(信息科学版)》 2025年第4期814-821,共8页
针对网络节点脆弱,潜在攻击行为较多且交集情况冗余,导致特征识别精度以及分类效果较差,监测稳定性和效率较低的问题,研究了基于模糊Markov博弈算法的网络潜在攻击监测。利用融合度压缩感知方法和特征识别度参数分析方法,分析网络潜在... 针对网络节点脆弱,潜在攻击行为较多且交集情况冗余,导致特征识别精度以及分类效果较差,监测稳定性和效率较低的问题,研究了基于模糊Markov博弈算法的网络潜在攻击监测。利用融合度压缩感知方法和特征识别度参数分析方法,分析网络潜在攻击特征的随机离散分布序列,提取和分析网络潜在攻击谱特征量;采取随机森林算法,区分网络潜在攻击类型,进行了网络潜在攻击风险模糊Markov博弈分析;依据风险状态集,结合最小最大化原则,监测网络潜在攻击风险。算例测试结果表明,应用所提方法,设置了潜在攻击行为参数,潜在攻击识别率波动较小,模糊Markov博弈分析结果与实际风险值最为接近,具有较高的识别精度、监测效率和监测稳定性。 展开更多
关键词 网络潜在攻击 特征提取 随机森林 风险模糊Markov博弈分析
在线阅读 下载PDF
基于改进聚类分析算法的医院网络异常信息自动检测研究
16
作者 李芳 郭志航 杨明 《电子设计工程》 2025年第16期79-82,共4页
为适应复杂多变的医院网络环境,降低噪声对异常信息检测的影响,提出基于改进聚类分析算法的医院网络异常信息自动检测方法。引入密度敏感距离与模糊熵,改进模糊C均值聚类分析算法;利用该算法聚类处理医院网络信息训练样本,并标记各聚类... 为适应复杂多变的医院网络环境,降低噪声对异常信息检测的影响,提出基于改进聚类分析算法的医院网络异常信息自动检测方法。引入密度敏感距离与模糊熵,改进模糊C均值聚类分析算法;利用该算法聚类处理医院网络信息训练样本,并标记各聚类簇,得到医院网络正常信息簇;依据医院网络正常信息簇,构造医院网络正常信息模型,实现医院网络异常信息自动检测。实验证明,该方法可有效聚类处理医院网络信息训练样本,完成聚类簇标记,可以自动检测医院网络异常信息,且检测精度较高。 展开更多
关键词 改进聚类分析 医院网络 异常信息 自动检测 密度敏感距离 模糊熵
在线阅读 下载PDF
基于模糊贝叶斯网络的隧道围岩富水破碎风险分析方法 被引量:1
17
作者 朱庆 郑威鹏 +5 位作者 吴浩宇 丁雨淋 郭永欣 王强 刘利 张骏骁 《西南交通大学学报》 北大核心 2025年第5期1071-1079,共9页
富水破碎不良地质区在隧道施工中容易诱发涌水灾害,为准确分析隧道围岩的富水破碎风险,且满足自动化、定量化风险分析需求,基于开挖数据构建模糊贝叶斯网络风险评估模型,通过隶属函数量化地质参数的不确定性,并结合贝叶斯概率推理,融合... 富水破碎不良地质区在隧道施工中容易诱发涌水灾害,为准确分析隧道围岩的富水破碎风险,且满足自动化、定量化风险分析需求,基于开挖数据构建模糊贝叶斯网络风险评估模型,通过隶属函数量化地质参数的不确定性,并结合贝叶斯概率推理,融合隧道地震预报法与瞬变电磁法的探测数据,得到围岩富水破碎风险概率;进一步利用三维体素模型将风险概率映射至三维坐标,可视化表达风险的空间分布特征.选取典型长大深埋隧道进行实验分析,结果表明:评估模型对地下水情况与岩体完整性分类的准确率分别为80.91%和82.81%,且不受数据完备性限制,能够在单一或多源数据条件下完成定量分析;所建三维体素模型为风险防控提供了有效参考,其中,相较于单一数据,多源数据融合分析结果与现场揭露的富水区、破碎带位置吻合度更高. 展开更多
关键词 隧道 风险分析 三维地质建模 模糊贝叶斯网络 数据融合
在线阅读 下载PDF
因情施策:如何激活制造企业多元绿色转型路径——基于模糊集定性比较分析方法的研究 被引量:1
18
作者 任相伟 孙丽文 《科技进步与对策》 北大核心 2025年第2期113-121,共9页
服务“双碳”发展目标,探究差异化情境下制造企业多元绿色转型路径日益重要。为明晰制造企业绿色转型驱动因素的多重并发作用机制,以制造企业为研究对象,以跨层次网络嵌入、绿色动态能力等为前因变量,以绿色绩效为结果变量,运用模糊集... 服务“双碳”发展目标,探究差异化情境下制造企业多元绿色转型路径日益重要。为明晰制造企业绿色转型驱动因素的多重并发作用机制,以制造企业为研究对象,以跨层次网络嵌入、绿色动态能力等为前因变量,以绿色绩效为结果变量,运用模糊集定性比较分析方法挖掘制造企业绿色转型多组态实现路径。基于研究结果归纳出“主动变革”“能力支撑”和“积极模仿”3类高水平绿色转型路径,以及“有心无力”和“有力无意”两类警示性非高水平绿色转型路径。通过剖析复杂动态网络中制造企业绿色转型各关联因素的交互作用,凸显转型过程与路径的复杂性和主动性,进一步揭示路径差异化构型,为差异化情境下企业绿色转型决策制定、叠代螺旋式阶段路径甄别与匹配提供可行方案。 展开更多
关键词 跨层次网络嵌入 绿色转型 组态路径 模糊集定性比较分析
在线阅读 下载PDF
基于TIFANP-TOPSIS-TIFCE法的大跨桥梁安全状态评估方法 被引量:2
19
作者 常龙飞 吴杨 +2 位作者 王晨 冉冰川 郑锋 《重庆交通大学学报(自然科学版)》 北大核心 2025年第1期43-54,共12页
针对传统方法子指标的不确定性问题,提出了一种基于三角直觉模糊网络分析法(triangular intuitionistic fuzzy analytic network process,TIFANP)、优劣解距离法(technique for order preference by similarity to an ideal solution,TO... 针对传统方法子指标的不确定性问题,提出了一种基于三角直觉模糊网络分析法(triangular intuitionistic fuzzy analytic network process,TIFANP)、优劣解距离法(technique for order preference by similarity to an ideal solution,TOPSIS)和三角直觉模糊综合评价(triangular intuitionistic fuzzy comprehensive evaluation,TIFCE)的大跨桥梁安全状态评估方法。首先,建立大跨桥梁安全状态分层指标体系,采用TIFANP法确定考虑指标相互影响后的权重;其次,引入TOPSIS法分配指标各截面权重,进而获得子指标取值;然后,将桥梁安全状态划分为5级,通过TIFCE法构建指标在不同等级的隶属度和非隶属度函数,据此建立对应判断矩阵,并进行桥梁安全状态指数综合计算;最后,以某大跨悬索桥监测数据为依托,验证了所提方法的有效性。结果表明:所提方法能够更合理地处理评价指标间的相互影响以及专家评分时的不确定,可为运营期大跨桥梁安全状态的准确评估提供新思路。 展开更多
关键词 桥梁工程 大跨桥梁 安全状态评估 三角直觉模糊网络分析法 优劣解距离法 三角直觉模糊综合评价
在线阅读 下载PDF
低资源场景下基于DA优化FNN的学习者分类方法 被引量:1
20
作者 张雅雯 张丽萍 +1 位作者 闫盛 曹亚如 《计算机工程与设计》 北大核心 2025年第3期895-902,共8页
针对现有方法在分类学习者时面临过拟合、缺乏可解释性等问题,提出一种低资源场景下基于蜻蜓算法(DA)优化模糊神经网络(FNN)的学习者分类方法。面向有限的学习者标注样本,构建基于模糊神经网络的学习者分类模型;针对该网络收敛速度慢、... 针对现有方法在分类学习者时面临过拟合、缺乏可解释性等问题,提出一种低资源场景下基于蜻蜓算法(DA)优化模糊神经网络(FNN)的学习者分类方法。面向有限的学习者标注样本,构建基于模糊神经网络的学习者分类模型;针对该网络收敛速度慢、容易陷入局部最优等问题,采用蜻蜓算法对隶属度函数参数寻优;捕获输入与输出之间的模糊规则,对学习者分类过程和结果展开分析。实验结果表明,利用蜻蜓算法进行优化能够提高模糊神经网络的收敛速度,其过程及结果具有可解释性。 展开更多
关键词 学习者分类 模糊神经网络 蜻蜓算法 模糊规则 可解释性 学习者分析 低资源场景
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部