In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternati...In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attr...An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.展开更多
Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the...Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.展开更多
Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy mult...Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university.展开更多
To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation...To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.展开更多
Uncertainty and ambiguity are pervasive in real-world intelligent systems,necessitating advanced mathematical frameworks for effective modeling and analysis.Fermatean fuzzy sets(FFSs),as a recent extension of classica...Uncertainty and ambiguity are pervasive in real-world intelligent systems,necessitating advanced mathematical frameworks for effective modeling and analysis.Fermatean fuzzy sets(FFSs),as a recent extension of classical fuzzy theory,provide enhanced flexibility for representing complex uncertainty.In this paper,we propose a unified parametric divergence operator for FFSs,which comprehensively captures the interplay among membership,nonmembership,and hesitation degrees.The proposed operator is rigorously analyzed with respect to key mathematical properties,including non-negativity,non-degeneracy,and symmetry.Notably,several well-known divergence operators,such as Jensen-Shannon divergence,Hellinger distance,andχ2-divergence,are shown to be special cases within our unified framework.Extensive experiments on pattern classification,hierarchical clustering,and multiattribute decision-making tasks demonstrate the competitive performance and stability of the proposed operator.These results confirm both the theoretical significance and practical value of our method for advanced fuzzy information processing in machine learning and intelligent decision-making.展开更多
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.展开更多
Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation o...Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation of specific decision-making problems and choose the best method to solve them.Multi-valued neutrosophic set,as an extension of neutrosophic set,can more effectively and accurately describe incomplete,uncertain or inconsistent information.TODIM and TOPSIS methods are two commonly used multi-attribute decision-making methods,each of which has its advantages and disadvantages.This paper proposes a new method based on TODIM and TOPSIS to solve multi-attribute decision-making problems under multi-valued neutrosophic environment.After introducing the related theory of multi-valued neutrosophic set and the traditional TODIM and TOPSIS methods,the new method based on a combination of TODIM and TOPSIS methods is described.And then,two illustrative examples proved the feasibility and validity of the proposed method.Finally,the result has been compared with some existing methods under the same examples and the proposed method’s superiority has been proved.This paper studies this kind of decision-making problem from algorithm idea,algorithm steps and decision-making influencing factors.展开更多
An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic ...An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.展开更多
In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute deci...In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute decision-making method is employed to predict the performance of aeroengine, The synthetic weights of interval numbers are obtained by calculating deviation degree and possibility degree. As an example of application, 5 performance parameters monitored on 10 CF6 aeroengines of China Eastern Airlines Co., Ltd are adopted as decision attributes to verify the algorithm. The obtained synthetic ranking result shows the effectiveness and rationality of the proposed method in reflecting the performance stares of aeroengins.展开更多
The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then t...The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.展开更多
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr...To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.展开更多
This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly know...This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method.展开更多
The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to...The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method.展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguis...Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
文摘In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.
基金Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the LargeGroup Research Project underGrant Number(R.G.P.2/181/44).
文摘Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.
基金This paper was supported by Wonkwang University in 2022.
文摘Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university.
基金supported by the Research Innovation Project of Shanghai Education Committee (08YS19)the Excellent Young Teacher Project of Shanghai University
文摘To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.
文摘Uncertainty and ambiguity are pervasive in real-world intelligent systems,necessitating advanced mathematical frameworks for effective modeling and analysis.Fermatean fuzzy sets(FFSs),as a recent extension of classical fuzzy theory,provide enhanced flexibility for representing complex uncertainty.In this paper,we propose a unified parametric divergence operator for FFSs,which comprehensively captures the interplay among membership,nonmembership,and hesitation degrees.The proposed operator is rigorously analyzed with respect to key mathematical properties,including non-negativity,non-degeneracy,and symmetry.Notably,several well-known divergence operators,such as Jensen-Shannon divergence,Hellinger distance,andχ2-divergence,are shown to be special cases within our unified framework.Extensive experiments on pattern classification,hierarchical clustering,and multiattribute decision-making tasks demonstrate the competitive performance and stability of the proposed operator.These results confirm both the theoretical significance and practical value of our method for advanced fuzzy information processing in machine learning and intelligent decision-making.
文摘In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
基金This research was funded by the Humanities and Social Sciences Foundation of Ministry of Education of the Peoples Republic of China(17YJA630115)The recipient of the founding is DX.
文摘Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation of specific decision-making problems and choose the best method to solve them.Multi-valued neutrosophic set,as an extension of neutrosophic set,can more effectively and accurately describe incomplete,uncertain or inconsistent information.TODIM and TOPSIS methods are two commonly used multi-attribute decision-making methods,each of which has its advantages and disadvantages.This paper proposes a new method based on TODIM and TOPSIS to solve multi-attribute decision-making problems under multi-valued neutrosophic environment.After introducing the related theory of multi-valued neutrosophic set and the traditional TODIM and TOPSIS methods,the new method based on a combination of TODIM and TOPSIS methods is described.And then,two illustrative examples proved the feasibility and validity of the proposed method.Finally,the result has been compared with some existing methods under the same examples and the proposed method’s superiority has been proved.This paper studies this kind of decision-making problem from algorithm idea,algorithm steps and decision-making influencing factors.
基金The National Natural Science Foundation of China(No.70671017)
文摘An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.
文摘In view of the uncertainty of the monitored performance parameters of aeroengines, the fluctuating scope of the monitored infurmation during a period is taken as interval numbers, and the interval multi-attribute decision-making method is employed to predict the performance of aeroengine, The synthetic weights of interval numbers are obtained by calculating deviation degree and possibility degree. As an example of application, 5 performance parameters monitored on 10 CF6 aeroengines of China Eastern Airlines Co., Ltd are adopted as decision attributes to verify the algorithm. The obtained synthetic ranking result shows the effectiveness and rationality of the proposed method in reflecting the performance stares of aeroengins.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.
基金This project was supported by the National Natural Science Foundation of China (70671050 70471019)the Key Project of Hubei Provincial Department of Education (D200627005).
文摘To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.
基金supported by the National Natural Science Foundation of China (70473037)the Key Project of National Development and Reform Commission (1009-213011)
文摘This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method.
基金supported by the National Natural Science Foundation of China (70871117 70571086)the Development Foundation of Dalian Naval Academy
文摘The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method.
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
基金supported by the National Natural Science Foundation of China(61273275)
文摘Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.