With the continuous growth of exponential data in IoT,it is usually chosen to outsource data to the cloud server.However,cloud servers are usually provided by third parties,and there is a risk of privacy leakage.Encry...With the continuous growth of exponential data in IoT,it is usually chosen to outsource data to the cloud server.However,cloud servers are usually provided by third parties,and there is a risk of privacy leakage.Encrypting data can ensure its security,but at the same time,it loses the retrieval function of IoT data.Searchable Encryption(SE)can achieve direct retrieval based on ciphertext data.The traditional searchable encryption scheme has the problems of imperfect function,low retrieval efficiency,inaccurate retrieval results,and centralized cloud servers being vulnerable and untrustworthy.This paper proposes an Efficient searchable encryption scheme supporting fuzzy multi-keyword ranking search on the blockchain.The blockchain and IPFS are used to store the index and encrypted files in a distributed manner respectively.The tamper resistance of the distributed ledger ensures the authenticity of the data.The data retrieval work is performed by the smart contract to ensure the reliability of the data retrieval.The Local Sensitive Hash(LSH)function is combined with the Bloom Filter(BF)to realize the fuzzy multi-keyword retrieval function.In addition,to measure the correlation between keywords and files,a new weighted statistical algorithm combining RegionalWeight Score(RWS)and Term Frequency–Inverse Document Frequency(TF-IDF)is proposed to rank the search results.The balanced binary tree is introduced to establish the index structure,and the index binary tree traversal strategy suitable for this scheme is constructed to optimize the index structure and improve the retrieval efficiency.The experimental results show that the scheme is safe and effective in practical applications.展开更多
The theory of quadratic residues plays an important role in cryptography.In 2001,Cocks developed an identity-based encryption(IBE)scheme based on quadratic residues,resolving Shamir’s 17-year-old open problem.However...The theory of quadratic residues plays an important role in cryptography.In 2001,Cocks developed an identity-based encryption(IBE)scheme based on quadratic residues,resolving Shamir’s 17-year-old open problem.However,a notable drawback of Cocks’scheme is the significant expansion of the ciphertext,and some of its limitations have been addressed in subsequent research.Recently,Cotan and Teşeleanu highlighted that previous studies on Cocks’scheme relied on a trial-and-error method based on Jacobi symbols to generate the necessary parameters for the encryption process.They enhanced the encryption speed of Cocks’scheme by eliminating this trialand-error method.Based on security analysis,this study concludes that the security of Cotan-Teşeleanu’s proposal cannot be directly derived from the security of the original Cocks’scheme.Furthermore,by adopting the Cotan-Teşeleanu method and introducing an additional variable as a public element,this study develops a similar enhancement scheme that not only accelerates the encryption speed but also provides security equivalent to the original Cocks’scheme.展开更多
This paper describes two identity-based broadcast encryption (IBBE) schemes for mobile ad hoc networks. The first scheme proposed achieves sub-linear size cipertexts and the second scheme achieves O(1)- size ciphe...This paper describes two identity-based broadcast encryption (IBBE) schemes for mobile ad hoc networks. The first scheme proposed achieves sub-linear size cipertexts and the second scheme achieves O(1)- size ciphertexts. Furthermore, when the public keys are transmitted, the two schemes have short transmissions and achieve O(1) user storage cost, which are important for a mobile ad hoc network. Finally, the proposed schemes are provable security under the decision generalized bilinear Diffi-Hellman (GBDH) assumption in the random oracles model.展开更多
An identity-based encryption(IBE) was studied with non-interactively opening property that the plain text of a ciphertext can be revealed without affecting the security of the encryption system.Two kinds of non-intera...An identity-based encryption(IBE) was studied with non-interactively opening property that the plain text of a ciphertext can be revealed without affecting the security of the encryption system.Two kinds of non-interactive opening properties for IBE schemes were defined along with a concrete scheme in each case.展开更多
In this paper,we show how to use the dual techniques in the subgroups to give a secure identity-based broadcast encryption(IBBE) scheme with constant-size ciphertexts. Our scheme achieves the full security(adaptive se...In this paper,we show how to use the dual techniques in the subgroups to give a secure identity-based broadcast encryption(IBBE) scheme with constant-size ciphertexts. Our scheme achieves the full security(adaptive security) under three static(i.e. non q-based) assumptions. It is worth noting that only recently Waters gives a short ciphertext broadcast encryption system that is even adaptively secure under the simple assumptions. One feature of our methodology is that it is relatively simple to leverage our techniques to get adaptive security.展开更多
This paper proposes an identity-based encryption scheme with the help of bilinear pairings, where the identity information of a user functions as the user's public key. The advantage of an identity-based public key s...This paper proposes an identity-based encryption scheme with the help of bilinear pairings, where the identity information of a user functions as the user's public key. The advantage of an identity-based public key system is that it can avoid public key certificates and certificate management. Our identity-based encryption scheme enjoys short ciphertexts and provable security against chosen-ciphertext attack (CCA).展开更多
Broadcast encryption (BE) allows a sender to broadcast its message to a set of receivers in a single ciphertext. However, in broadcast encryption scheme, ciphertext length is always related to the size of the receiver...Broadcast encryption (BE) allows a sender to broadcast its message to a set of receivers in a single ciphertext. However, in broadcast encryption scheme, ciphertext length is always related to the size of the receiver set. Thus, how to improve the communication of broadcast encryption is a big issue. In this paper, we proposed an identity-based homomorphic broadcast encryption scheme which supports an external entity to directly calculate ciphertexts and get a new ciphertext which is the corresponding result of the operation on plaintexts without decrypting them. The correctness and security proofs of our scheme were formally proved. Finally, we implemented our scheme in a simulation environment and the experiment results showed that our scheme is efficient for practical applications.展开更多
In ACM'CCS 2009,Camenisch,et al.proposed the Oblivious Transfer with Access Control(AC-OT) in which each item is associated with an attribute set and can only be available,on request,to the users who have all the ...In ACM'CCS 2009,Camenisch,et al.proposed the Oblivious Transfer with Access Control(AC-OT) in which each item is associated with an attribute set and can only be available,on request,to the users who have all the attributes in the associated set.Namely,AC-OT achieves access control policy for conjunction of attributes.Essentially,the functionality of AC-OT is equivalent to the sim-plified version that we call AC-OT-SV:for each item,one attribute is associated with it,and it is requested that only the users who possess the associated attribute can obtain the item by queries.On one hand,AC-OT-SV is a special case of AC-OT when there is just one associated attribute with each item.On the other hand,any AC-OT can be realized by an AC-OT-SV.In this paper,we first present a concrete AC-OT-SV protocol which is proved to be secure in the model defined by Camenisch,et al..Then from the protocol,interestingly,a concrete Identity-Based Encryption(IBE) with Anonymous Key Issuing(AKI) is given which is just a direct application to AC-OT-SV.By comparison,we show that the AKI protocol we present is more efficient in communications than that proposed by Chow.展开更多
Identity-Based Encryption (IBE) has seen limited adoption, largely due to the absolute trust that must be placed in the private key generator (PKG)—an authority that computes the private keys for all the users in the...Identity-Based Encryption (IBE) has seen limited adoption, largely due to the absolute trust that must be placed in the private key generator (PKG)—an authority that computes the private keys for all the users in the environment. Several constructions have been proposed to reduce the trust required in the PKG (and thus preserve the privacy of users), but these have generally relied on unrealistic assumptions regarding non-collusion between various entities in the system. Unfortunately, these constructions have not significantly improved IBE adoption rates in real-world environments. In this paper, we present a construction that reduces trust in the PKG without unrealistic non-collusion assumptions. We achieve this by incorporating a novel combination of digital credential technology and bilinear maps, and making use of multiple randomly-chosen entities to complete certain tasks. The main result and primary contribution of this paper are a thorough security analysis of this proposed construction, examining the various entity types, attacker models, and collusion opportunities in this environment. We show that this construction can prevent, or at least mitigate, all considered attacks. We conclude that our construction appears to be effective in preserving user privacy and we hope that this construction and its security analysis will encourage greater use of IBE in real-world environments.展开更多
A recent proposal by Adams integrates the digital credentials (DC) technology of Brands with the identity-based encryption (IBE) technology of Boneh and Franklin to create an IBE scheme that demonstrably enhances priv...A recent proposal by Adams integrates the digital credentials (DC) technology of Brands with the identity-based encryption (IBE) technology of Boneh and Franklin to create an IBE scheme that demonstrably enhances privacy for users. We refer to this scheme as a privacy-preserving identity-based encryption (PP-IBE) construction. In this paper, we discuss the concrete implementation considerations for PP-IBE and provide a detailed instantiation (based on q-torsion groups in supersingular elliptic curves) that may be useful both for proof-of-concept purposes and for pedagogical purposes.展开更多
In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on...In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud servers.Servers on cloud platforms usually have some subjective or objective attacks,which make the outsourced graph data in an insecure state.The issue of privacy data protection has become an important obstacle to data sharing and usage.How to query outsourcing graph data safely and effectively has become the focus of research.Adjacency query is a basic and frequently used operation in graph,and it will effectively promote the query range and query ability if multi-keyword fuzzy search can be supported at the same time.This work proposes to protect the privacy information of outsourcing graph data by encryption,mainly studies the problem of multi-keyword fuzzy adjacency query,and puts forward a solution.In our scheme,we use the Bloom filter and encryption mechanism to build a secure index and query token,and adjacency queries are implemented through indexes and query tokens on the cloud server.Our proposed scheme is proved by formal analysis,and the performance and effectiveness of the scheme are illustrated by experimental analysis.The research results of this work will provide solid theoretical and technical support for the further popularization and application of encrypted graph data processing technology.展开更多
Efficient multi-keyword fuzzy search over encrypted data is a desirable technology for data outsourcing in cloud storage.However,the current searchable encryption solutions still have deficiencies in search efficiency...Efficient multi-keyword fuzzy search over encrypted data is a desirable technology for data outsourcing in cloud storage.However,the current searchable encryption solutions still have deficiencies in search efficiency,accuracy and multiple data owner support.In this paper,we propose an encrypted data searching scheme that can support multiple keywords fuzzy search with order preserving(PMS).First,a new spelling correction algorithm-(Possibility-Levenshtein based Spelling Correction)is proposed to correct user input errors,so that fuzzy keywords input can be supported.Second,Paillier encryption is introduced to calculate encrypted relevance score of multiple keywords for order preserving.Then,a queue-based query method is also applied in this scheme to break the linkability between the query keywords and search results and protect the access pattern.Our proposed scheme achieves fuzzy matching without expanding the index table or sacrificing computational efficiency.The theoretical analysis and experiment results show that our scheme is secure,accurate,error-tolerant and very efficient.展开更多
Two new constructions of chosen-ciphertext secure fuzzy identity-based encryption (fuzzy-IBE) schemes without random oracle are proposed. The first scheme combines the modification of chosen-plaintext secure Sahai a...Two new constructions of chosen-ciphertext secure fuzzy identity-based encryption (fuzzy-IBE) schemes without random oracle are proposed. The first scheme combines the modification of chosen-plaintext secure Sahai and Waters' "large universe" construction and authenticated symmetric encryption, and uses con- sistency checking to handle with ill-formed ciphertexts to achieve chosen-ciphertext security in the selective ID model. The second scheme improves the efficiency of first scheme by eliminating consistency checking. This improved scheme is more efficient than existing chosen-ciphertext secure fuzzy-IBE scheme in the standard model.展开更多
Identity-based encryption with equality test(IBEET)is proposed to check whether the underlying messages of ciphertexts,even those encrypted with different public keys,are the same or not without decryption.Since peopl...Identity-based encryption with equality test(IBEET)is proposed to check whether the underlying messages of ciphertexts,even those encrypted with different public keys,are the same or not without decryption.Since people prefer to encrypt before outsourcing their data for privacy protection nowadays,the research of IBEET on cloud computing applications naturally attracts attention.However,we claim that the existing IBEET schemes suffer from the illegal trapdoor sharing problem caused by the inherited key escrow problem of the Identity-Based Encryption(IBE)mechanism.In traditional IBEET,the private key generator(PKG)with the master secret key generates trapdoors for all authorized cloud servers.Considering the reality in practice,the PKG is usually not fully trusted.In this case,the Private-Key Generator(PKG)may generate,share,or even sell any trapdoor without any risk of being caught,or not being held accountable,which may lead to serious consequences such as the illegal sharing of a gene bank's trapdoors.In this paper,to relieve the illegal trapdoor sharing problem in IBEET,we present a new notion,called IBEET Supporting Accountable Authorization(IBEET-AA).In IBEET-AA,if there is a disputed trapdoor,the generator will be distinguished among the PKG and suspected testers by an additional tracing algorithm.For the additional tracing function,except for the traditional indistinguishability(IND)and one-way(OW)security models in IBEET,we define three more security models to protect the tracing security against dishonest authorizers,PKG,and testers,respectively.Based on Gentry's IBE scheme,we instantiate IBEET-AA and give a specific construction along with a formalized security proof with random oracles.展开更多
According to the relation of an attribute set and its subset,the author presents a hierarchical attribute-based encryption scheme in which a secret key is associated with an attribute set.A user can delegate the priva...According to the relation of an attribute set and its subset,the author presents a hierarchical attribute-based encryption scheme in which a secret key is associated with an attribute set.A user can delegate the private key corresponding to any subset of an attribute set while he has the private key corresponding to the attribute set.Moreover,the size of the ciphertext is constant,but the size of private key is linear with the order of the attribute set in the hierarchical attribute-based encryption scheme.Lastly,we can also prove that this encryption scheme meets the security of IND-sSETCPA in the standard model.展开更多
With recent significant development in the portable device market, cloud computing is getting more and more utilized. Many sensitive data are stored in cloud central servers. To ensure privacy, these data are usually ...With recent significant development in the portable device market, cloud computing is getting more and more utilized. Many sensitive data are stored in cloud central servers. To ensure privacy, these data are usually encrypted before being uploaded—making file searching complicated. Although previous cloud computing searchable encryption schemes allow users to search encrypted data by keywords securely, these techniques only support exact keyword search and will fail if there are some spelling errors or if some morphological variants of words are used. In this paper, we provide the solution for fuzzy keyword search over encrypted cloud data. K-grams is used to produce fuzzy results. For security reasons, we use two separate servers that cannot communicate with each other. Our experiment result shows that our system is effective and scalable to handle large number of encrypted files.展开更多
This paper proposed an identity-based steganographic scheme, where a receiver with certain authority can recover the secret message ready for him, but cannot detect the existence of other secret messages. The proposed...This paper proposed an identity-based steganographic scheme, where a receiver with certain authority can recover the secret message ready for him, but cannot detect the existence of other secret messages. The proposed scheme created several separate covert communication channels tagged by the Fuzzy Identity-Based Encryption (FIBE) in one grayscale image. Then each channel is used to embed one secret message by using any content-aware steganographic scheme. Receivers with different attributes can extract different messages corresponded. The Experiments illustrated the feasibility of this identity-based secret message extraction. Further, the proposed scheme presents high undetectability against steganalytic attack launched by receivers without corresponded attributes.展开更多
The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the au...The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.展开更多
In this paper, an efficient hybrid proxy re-encryption scheme that allows the transformation of the ciphertexts in a traditional public key cryptosystem into the ciphertexts in an identity-based system is proposed. Th...In this paper, an efficient hybrid proxy re-encryption scheme that allows the transformation of the ciphertexts in a traditional public key cryptosystem into the ciphertexts in an identity-based system is proposed. The scheme is non-interactive, unidirectional and collude "safe". Furthermore, it is compatible with current IBE (identity-based encryption) deployments. The scheme has chosen ciphertext security in the random oracle model assuming the hardness of the Decisional Bilinear Diffie-Hellman problem.展开更多
A search strategy over encrypted cloud data based on keywords has been improved and has presented a method using different strategies on the client and the server to improve the search efficiency in this paper. The cl...A search strategy over encrypted cloud data based on keywords has been improved and has presented a method using different strategies on the client and the server to improve the search efficiency in this paper. The client uses the Chinese and English to achieve the synonym construction of the keywords, the establishment of the fuzzy-syllable words and synonyms set of keywords and the implementation of fuzzy search strategy over the encryption of cloud data based on keywords. The server side through the analysis of the user’s query request provides keywords for users to choose and topic words and secondary words are picked out. System will match topic words with historical inquiry in time order, and then the new query result of the request is directly gained. The analysis of the simulation experiment shows that the fuzzy search strategy can make better use of historical results on the basis of privacy protection for the realization of efficient data search, saving the search time and improving the efficiency of search.展开更多
基金funded by the Jilin Provincial Department of Education Scientific Research Project(Project No.JJKH20250872KJ).
文摘With the continuous growth of exponential data in IoT,it is usually chosen to outsource data to the cloud server.However,cloud servers are usually provided by third parties,and there is a risk of privacy leakage.Encrypting data can ensure its security,but at the same time,it loses the retrieval function of IoT data.Searchable Encryption(SE)can achieve direct retrieval based on ciphertext data.The traditional searchable encryption scheme has the problems of imperfect function,low retrieval efficiency,inaccurate retrieval results,and centralized cloud servers being vulnerable and untrustworthy.This paper proposes an Efficient searchable encryption scheme supporting fuzzy multi-keyword ranking search on the blockchain.The blockchain and IPFS are used to store the index and encrypted files in a distributed manner respectively.The tamper resistance of the distributed ledger ensures the authenticity of the data.The data retrieval work is performed by the smart contract to ensure the reliability of the data retrieval.The Local Sensitive Hash(LSH)function is combined with the Bloom Filter(BF)to realize the fuzzy multi-keyword retrieval function.In addition,to measure the correlation between keywords and files,a new weighted statistical algorithm combining RegionalWeight Score(RWS)and Term Frequency–Inverse Document Frequency(TF-IDF)is proposed to rank the search results.The balanced binary tree is introduced to establish the index structure,and the index binary tree traversal strategy suitable for this scheme is constructed to optimize the index structure and improve the retrieval efficiency.The experimental results show that the scheme is safe and effective in practical applications.
基金Rising-Star Program of Shanghai 2023 Science and Technology Innovation Action Plan(Yangfan Special Project),China(No.23YF1401000)Fundamental Research Funds for the Central Universities,China(No.2232022D-25)。
文摘The theory of quadratic residues plays an important role in cryptography.In 2001,Cocks developed an identity-based encryption(IBE)scheme based on quadratic residues,resolving Shamir’s 17-year-old open problem.However,a notable drawback of Cocks’scheme is the significant expansion of the ciphertext,and some of its limitations have been addressed in subsequent research.Recently,Cotan and Teşeleanu highlighted that previous studies on Cocks’scheme relied on a trial-and-error method based on Jacobi symbols to generate the necessary parameters for the encryption process.They enhanced the encryption speed of Cocks’scheme by eliminating this trialand-error method.Based on security analysis,this study concludes that the security of Cotan-Teşeleanu’s proposal cannot be directly derived from the security of the original Cocks’scheme.Furthermore,by adopting the Cotan-Teşeleanu method and introducing an additional variable as a public element,this study develops a similar enhancement scheme that not only accelerates the encryption speed but also provides security equivalent to the original Cocks’scheme.
基金the National Natural Science Foundation of China (Nos. 60673072, 60803149)the National Basic Research Program (973) of China(No. 2007CB311201)
文摘This paper describes two identity-based broadcast encryption (IBBE) schemes for mobile ad hoc networks. The first scheme proposed achieves sub-linear size cipertexts and the second scheme achieves O(1)- size ciphertexts. Furthermore, when the public keys are transmitted, the two schemes have short transmissions and achieve O(1) user storage cost, which are important for a mobile ad hoc network. Finally, the proposed schemes are provable security under the decision generalized bilinear Diffi-Hellman (GBDH) assumption in the random oracles model.
文摘An identity-based encryption(IBE) was studied with non-interactively opening property that the plain text of a ciphertext can be revealed without affecting the security of the encryption system.Two kinds of non-interactive opening properties for IBE schemes were defined along with a concrete scheme in each case.
基金supported by the Nature Science Foundation of China under grant 60970119, 60803149the National Basic Research Program of China(973) under grant 2007CB311201
文摘In this paper,we show how to use the dual techniques in the subgroups to give a secure identity-based broadcast encryption(IBBE) scheme with constant-size ciphertexts. Our scheme achieves the full security(adaptive security) under three static(i.e. non q-based) assumptions. It is worth noting that only recently Waters gives a short ciphertext broadcast encryption system that is even adaptively secure under the simple assumptions. One feature of our methodology is that it is relatively simple to leverage our techniques to get adaptive security.
基金the National Natural Science Foundation of China(Nos.60673077,60873229)
文摘This paper proposes an identity-based encryption scheme with the help of bilinear pairings, where the identity information of a user functions as the user's public key. The advantage of an identity-based public key system is that it can avoid public key certificates and certificate management. Our identity-based encryption scheme enjoys short ciphertexts and provable security against chosen-ciphertext attack (CCA).
文摘Broadcast encryption (BE) allows a sender to broadcast its message to a set of receivers in a single ciphertext. However, in broadcast encryption scheme, ciphertext length is always related to the size of the receiver set. Thus, how to improve the communication of broadcast encryption is a big issue. In this paper, we proposed an identity-based homomorphic broadcast encryption scheme which supports an external entity to directly calculate ciphertexts and get a new ciphertext which is the corresponding result of the operation on plaintexts without decrypting them. The correctness and security proofs of our scheme were formally proved. Finally, we implemented our scheme in a simulation environment and the experiment results showed that our scheme is efficient for practical applications.
文摘In ACM'CCS 2009,Camenisch,et al.proposed the Oblivious Transfer with Access Control(AC-OT) in which each item is associated with an attribute set and can only be available,on request,to the users who have all the attributes in the associated set.Namely,AC-OT achieves access control policy for conjunction of attributes.Essentially,the functionality of AC-OT is equivalent to the sim-plified version that we call AC-OT-SV:for each item,one attribute is associated with it,and it is requested that only the users who possess the associated attribute can obtain the item by queries.On one hand,AC-OT-SV is a special case of AC-OT when there is just one associated attribute with each item.On the other hand,any AC-OT can be realized by an AC-OT-SV.In this paper,we first present a concrete AC-OT-SV protocol which is proved to be secure in the model defined by Camenisch,et al..Then from the protocol,interestingly,a concrete Identity-Based Encryption(IBE) with Anonymous Key Issuing(AKI) is given which is just a direct application to AC-OT-SV.By comparison,we show that the AKI protocol we present is more efficient in communications than that proposed by Chow.
文摘Identity-Based Encryption (IBE) has seen limited adoption, largely due to the absolute trust that must be placed in the private key generator (PKG)—an authority that computes the private keys for all the users in the environment. Several constructions have been proposed to reduce the trust required in the PKG (and thus preserve the privacy of users), but these have generally relied on unrealistic assumptions regarding non-collusion between various entities in the system. Unfortunately, these constructions have not significantly improved IBE adoption rates in real-world environments. In this paper, we present a construction that reduces trust in the PKG without unrealistic non-collusion assumptions. We achieve this by incorporating a novel combination of digital credential technology and bilinear maps, and making use of multiple randomly-chosen entities to complete certain tasks. The main result and primary contribution of this paper are a thorough security analysis of this proposed construction, examining the various entity types, attacker models, and collusion opportunities in this environment. We show that this construction can prevent, or at least mitigate, all considered attacks. We conclude that our construction appears to be effective in preserving user privacy and we hope that this construction and its security analysis will encourage greater use of IBE in real-world environments.
文摘A recent proposal by Adams integrates the digital credentials (DC) technology of Brands with the identity-based encryption (IBE) technology of Boneh and Franklin to create an IBE scheme that demonstrably enhances privacy for users. We refer to this scheme as a privacy-preserving identity-based encryption (PP-IBE) construction. In this paper, we discuss the concrete implementation considerations for PP-IBE and provide a detailed instantiation (based on q-torsion groups in supersingular elliptic curves) that may be useful both for proof-of-concept purposes and for pedagogical purposes.
基金This research was supported in part by the Nature Science Foundation of China(Nos.62262033,61962029,61762055,62062045 and 62362042)the Jiangxi Provincial Natural Science Foundation of China(Nos.20224BAB202012,20202ACBL202005 and 20202BAB212006)+3 种基金the Science and Technology Research Project of Jiangxi Education Department(Nos.GJJ211815,GJJ2201914 and GJJ201832)the Hubei Natural Science Foundation Innovation and Development Joint Fund Project(No.2022CFD101)Xiangyang High-Tech Key Science and Technology Plan Project(No.2022ABH006848)Hubei Superior and Distinctive Discipline Group of“New Energy Vehicle and Smart Transportation”,the Project of Zhejiang Institute of Mechanical&Electrical Engineering,and the Jiangxi Provincial Social Science Foundation of China(No.23GL52D).
文摘In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud servers.Servers on cloud platforms usually have some subjective or objective attacks,which make the outsourced graph data in an insecure state.The issue of privacy data protection has become an important obstacle to data sharing and usage.How to query outsourcing graph data safely and effectively has become the focus of research.Adjacency query is a basic and frequently used operation in graph,and it will effectively promote the query range and query ability if multi-keyword fuzzy search can be supported at the same time.This work proposes to protect the privacy information of outsourcing graph data by encryption,mainly studies the problem of multi-keyword fuzzy adjacency query,and puts forward a solution.In our scheme,we use the Bloom filter and encryption mechanism to build a secure index and query token,and adjacency queries are implemented through indexes and query tokens on the cloud server.Our proposed scheme is proved by formal analysis,and the performance and effectiveness of the scheme are illustrated by experimental analysis.The research results of this work will provide solid theoretical and technical support for the further popularization and application of encrypted graph data processing technology.
基金This work is supported by the National Natural Science Foundation of China under Grant 61402160 and 61872134Hunan Provincial Natural Science Foundation under Grant 2016JJ3043Open Funding for Universities in Hunan Province under grant 14K023.
文摘Efficient multi-keyword fuzzy search over encrypted data is a desirable technology for data outsourcing in cloud storage.However,the current searchable encryption solutions still have deficiencies in search efficiency,accuracy and multiple data owner support.In this paper,we propose an encrypted data searching scheme that can support multiple keywords fuzzy search with order preserving(PMS).First,a new spelling correction algorithm-(Possibility-Levenshtein based Spelling Correction)is proposed to correct user input errors,so that fuzzy keywords input can be supported.Second,Paillier encryption is introduced to calculate encrypted relevance score of multiple keywords for order preserving.Then,a queue-based query method is also applied in this scheme to break the linkability between the query keywords and search results and protect the access pattern.Our proposed scheme achieves fuzzy matching without expanding the index table or sacrificing computational efficiency.The theoretical analysis and experiment results show that our scheme is secure,accurate,error-tolerant and very efficient.
基金the National High Technology Research and Development Program (863) of China(No. 2006AA12A106)
文摘Two new constructions of chosen-ciphertext secure fuzzy identity-based encryption (fuzzy-IBE) schemes without random oracle are proposed. The first scheme combines the modification of chosen-plaintext secure Sahai and Waters' "large universe" construction and authenticated symmetric encryption, and uses con- sistency checking to handle with ill-formed ciphertexts to achieve chosen-ciphertext security in the selective ID model. The second scheme improves the efficiency of first scheme by eliminating consistency checking. This improved scheme is more efficient than existing chosen-ciphertext secure fuzzy-IBE scheme in the standard model.
基金supported by the National Natural Science Foundation of China under Grant Nos.62102299,62272362,62002288the Henan Key Laboratory of Network Cryptography Technology under Grant No.LNCT2022-A05,and the Youth Innovation Team of Shaanxi Universities.
文摘Identity-based encryption with equality test(IBEET)is proposed to check whether the underlying messages of ciphertexts,even those encrypted with different public keys,are the same or not without decryption.Since people prefer to encrypt before outsourcing their data for privacy protection nowadays,the research of IBEET on cloud computing applications naturally attracts attention.However,we claim that the existing IBEET schemes suffer from the illegal trapdoor sharing problem caused by the inherited key escrow problem of the Identity-Based Encryption(IBE)mechanism.In traditional IBEET,the private key generator(PKG)with the master secret key generates trapdoors for all authorized cloud servers.Considering the reality in practice,the PKG is usually not fully trusted.In this case,the Private-Key Generator(PKG)may generate,share,or even sell any trapdoor without any risk of being caught,or not being held accountable,which may lead to serious consequences such as the illegal sharing of a gene bank's trapdoors.In this paper,to relieve the illegal trapdoor sharing problem in IBEET,we present a new notion,called IBEET Supporting Accountable Authorization(IBEET-AA).In IBEET-AA,if there is a disputed trapdoor,the generator will be distinguished among the PKG and suspected testers by an additional tracing algorithm.For the additional tracing function,except for the traditional indistinguishability(IND)and one-way(OW)security models in IBEET,we define three more security models to protect the tracing security against dishonest authorizers,PKG,and testers,respectively.Based on Gentry's IBE scheme,we instantiate IBEET-AA and give a specific construction along with a formalized security proof with random oracles.
基金Supported by the National Natural Science Foundation of China(60903175,60703048)the Natural Science Foundation of Hubei Province(2009CBD307,2008CDB352)
文摘According to the relation of an attribute set and its subset,the author presents a hierarchical attribute-based encryption scheme in which a secret key is associated with an attribute set.A user can delegate the private key corresponding to any subset of an attribute set while he has the private key corresponding to the attribute set.Moreover,the size of the ciphertext is constant,but the size of private key is linear with the order of the attribute set in the hierarchical attribute-based encryption scheme.Lastly,we can also prove that this encryption scheme meets the security of IND-sSETCPA in the standard model.
文摘With recent significant development in the portable device market, cloud computing is getting more and more utilized. Many sensitive data are stored in cloud central servers. To ensure privacy, these data are usually encrypted before being uploaded—making file searching complicated. Although previous cloud computing searchable encryption schemes allow users to search encrypted data by keywords securely, these techniques only support exact keyword search and will fail if there are some spelling errors or if some morphological variants of words are used. In this paper, we provide the solution for fuzzy keyword search over encrypted cloud data. K-grams is used to produce fuzzy results. For security reasons, we use two separate servers that cannot communicate with each other. Our experiment result shows that our system is effective and scalable to handle large number of encrypted files.
文摘This paper proposed an identity-based steganographic scheme, where a receiver with certain authority can recover the secret message ready for him, but cannot detect the existence of other secret messages. The proposed scheme created several separate covert communication channels tagged by the Fuzzy Identity-Based Encryption (FIBE) in one grayscale image. Then each channel is used to embed one secret message by using any content-aware steganographic scheme. Receivers with different attributes can extract different messages corresponded. The Experiments illustrated the feasibility of this identity-based secret message extraction. Further, the proposed scheme presents high undetectability against steganalytic attack launched by receivers without corresponded attributes.
基金Supported by the National Natural Science Foundation of China(60903175,60703048)the Natural Science Foundation of Hubei Province (2009CBD307,2008CDB352)
文摘The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.
基金Supported by the National Natural Science Foundation of China (60673070)the Natural Science Foundation of Jiangsu Province, China (BK2006217)
文摘In this paper, an efficient hybrid proxy re-encryption scheme that allows the transformation of the ciphertexts in a traditional public key cryptosystem into the ciphertexts in an identity-based system is proposed. The scheme is non-interactive, unidirectional and collude "safe". Furthermore, it is compatible with current IBE (identity-based encryption) deployments. The scheme has chosen ciphertext security in the random oracle model assuming the hardness of the Decisional Bilinear Diffie-Hellman problem.
文摘A search strategy over encrypted cloud data based on keywords has been improved and has presented a method using different strategies on the client and the server to improve the search efficiency in this paper. The client uses the Chinese and English to achieve the synonym construction of the keywords, the establishment of the fuzzy-syllable words and synonyms set of keywords and the implementation of fuzzy search strategy over the encryption of cloud data based on keywords. The server side through the analysis of the user’s query request provides keywords for users to choose and topic words and secondary words are picked out. System will match topic words with historical inquiry in time order, and then the new query result of the request is directly gained. The analysis of the simulation experiment shows that the fuzzy search strategy can make better use of historical results on the basis of privacy protection for the realization of efficient data search, saving the search time and improving the efficiency of search.