The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a benchmark for testing control algorithms. This paper studies the use of fuzzy control method to study the stability con...The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a benchmark for testing control algorithms. This paper studies the use of fuzzy control method to study the stability control problem of a triple inverted pendulum system. By the linear model of the system, the feedback weight matrix of the LQR optimal control and the feedback parameters of the linear optimal control are designed to determine the parameters of the fuzzy controller. The simulation results show that the proposed method can achieve the stability control of the three stage inverted pendulum, and has good dynamic performance with simple parameter selection.展开更多
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c...The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.展开更多
This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI...This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI).The controller and inverter specifically regulate the HES and meet the load demand.To track optimum power,a Modified Perturb and Observe(MP&O)technique is used for HES.Ultra-capacitor(UCAP)based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions.For an improved PQ and PR,a two-way current control strategy such as the main controller(MC)and auxiliary controller(AC)is suggested for the 11-CHBI operation.MC is used to regulate the active current component through the fuzzy controller(FC),and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller(ANN-PI).By tracking the reference signals fromMC and AC,a novel hybrid pulse widthmodulation(HPWM)technique is proposed for the 11-CHBI operation.To justify and analyze the MATLAB/Simulink software-based designed model,the robust controller performance is tested through numerous steady-state and dynamic state case studies.展开更多
The super-maneuver flight performance has a very high tactical value, and the development of this tactical value has great significance. A discussion is devoted to the study of intelligent control methods and technolo...The super-maneuver flight performance has a very high tactical value, and the development of this tactical value has great significance. A discussion is devoted to the study of intelligent control methods and technologies of real-time distributed 3-dimensional animation simulation for the super-maneuverable attack of new generational fighter in this paper. A flight control system of super-maneuver is reconstructed by adopting three layers BP neural networks of number 3, and the fire/flight coupler is designed by introducing a fuzzy control rule whose universe of discourse and gain are regulated adaptively on the line. Furthermore, a new method of real-time distributed 3-dimensional animation simulation is put forward, and a real-time distributed 3-dimensional animation simulation tool platform is constructed in this paper. The simulation result is lifelike, perceivable directly and useful.展开更多
Through simulation analyses of vacuum counter-pressure casting fuzzy control systems based on MATLAB, fuzzy control systems designed by simulation can track technical route established well. When transmission function...Through simulation analyses of vacuum counter-pressure casting fuzzy control systems based on MATLAB, fuzzy control systems designed by simulation can track technical route established well. When transmission functions of vacuum counter-pressure casting controlled objects are changed in operation, fuzzy control systems can carry on self-regulation and stabilize quickly, and embody the advantages of fleet response velocity and little adjusting quantity. The design of vacuum counter-pressure casting fuzzy control systems is accelerated and improved greatly by simulation based on MATLAB. Meanwhile, their design is accurate and reliable. Moreover, microstructure and properties of thin-wall aluminum alloy castings are improved effectively by using fuzzy control systems.展开更多
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o...The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.展开更多
To solve the problem of self-balancing two-wheeled vehicle, this article presents double cascade PID control algorithm. This method reduces the coupling of balance control, speed control and direction control, because...To solve the problem of self-balancing two-wheeled vehicle, this article presents double cascade PID control algorithm. This method reduces the coupling of balance control, speed control and direction control, because of the special system structure. This article successfully solved the sensor fusion of gyroscope and accelerometer by using Kalman filtering algorithm, and adding in fuzzy PID algorithm to improve the flexibility of the steering system, thus greatly improving the accuracy and response rate of the system.展开更多
In order to deal with the complex process that incurs serious time delay, enormous inertia and nonlinear problems, fuzzy simulation human intelligent control algorithm rules are established. The fuzzy simulation human...In order to deal with the complex process that incurs serious time delay, enormous inertia and nonlinear problems, fuzzy simulation human intelligent control algorithm rules are established. The fuzzy simulation human intelligent controller and the hardware with the single-chip microcomputer are designed and the anti-interference measures to the whole system are provided.展开更多
A new control scheme, the hybrid fuzzy control method, for active dampingsuspension system is presented. The scheme is the result of effective combination of the statisticaloptimal control method based on the statisti...A new control scheme, the hybrid fuzzy control method, for active dampingsuspension system is presented. The scheme is the result of effective combination of the statisticaloptimal control method based on the statistical property of suspension system, with the bang-bangcontrol method based on the real-time characteristics of suspension system. Computer simulations areperformed to compare the effectiveness of hybrid fuzzy control scheme with that of optimal dampingcontrol, bang-bang control, and passive suspension. It takes the effects of time-variant factorsinto full account. The superiority of the proposed hybrid fuzzy control scheme for active dampingsuspension to the passive suspension is verified in the experiment study.展开更多
On the simple continuously variable transmission (CVT) driveline model, the design of adaptive fuzzy control system for CVT vehicle is presented. The adaptive fuzzy control system consists of a scaling factor self-t...On the simple continuously variable transmission (CVT) driveline model, the design of adaptive fuzzy control system for CVT vehicle is presented. The adaptive fuzzy control system consists of a scaling factor self-tuning fuzzy-PI throttle controller, and a hybrid fuzzy-PID CVT ratio and brake controller. The presented adaptive fuzzy control strategy is vehicle model independent, which depends only on the instantaneous vehicle states, but does not depend on vehicle parameters. So it has good robustness against uncertain vehicle parameters and exogenous load disturbance. Simulation results show that the proposed adaptive fuzzy strategy has good adaptability and practicality value.展开更多
A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a math...A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.展开更多
To develop cruise control system of an automobile with the metal pushing V-belt type CVT,the dynamic model of automobile travelling longitudinally is established, and the fuzzy controller of control system is designed...To develop cruise control system of an automobile with the metal pushing V-belt type CVT,the dynamic model of automobile travelling longitudinally is established, and the fuzzy controller of control system is designed. Considering uncertainty system parameter and exterior resistance disturbances, the stability of controller is investigated by simulating. The results of its simulation show that the fuzzy controller designed has practicability.展开更多
A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the se...A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.展开更多
According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric trans...According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric transmission based on brushless DC motor. A fuzzy controller is designed with continuous fuzzy variables and the simulation module of the aft power chain is proved by test. The fuzzy controller controls the process of continuously variable transmission steadily and the acceleration of vehicle is quick according to simulation results. The elementary performance exhibited in the simulation is a foundation for the further study of the electric transmission track vehicle.展开更多
A fuzzy controller of the winding/unwinding control system used in jig-dyeing machine is introduced,which is superior to the one with conventional optimal PID controller in convergence speed and stability.Its mathemat...A fuzzy controller of the winding/unwinding control system used in jig-dyeing machine is introduced,which is superior to the one with conventional optimal PID controller in convergence speed and stability.Its mathematical model and transfer function are presented based on mechanism of the winding/unwinding control system.Simulation of the fuzzy controller carried out in the MATLAB(Simulink)environment proves that the control system based on fuzzy controller is superior in quality,precision and operation to a conventional optimal PID controller.The outlined experimental results also show the effectiveness and the robustness of the fuzzy PID controller in good dynamic performance,high robustness to parameter variation and disturbance.展开更多
Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to t...Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria.展开更多
The fuzzy numerical value analysis method is adopted for the first time, which solves the problem of nanometer electro-thermal in filming process, The key technique is embodied by controlling the time distribution, te...The fuzzy numerical value analysis method is adopted for the first time, which solves the problem of nanometer electro-thermal in filming process, The key technique is embodied by controlling the time distribution, temperature and press in the filming process. The concrete technique of filming is showed by establishing the fuzzy mumbership function of above three indexes, which improves the precision of the materials of nanometer electro-thermal in hot-working. At the same time, the principles of the fuzzy relationship mapping inversion (FRMI) is put forward, Therefore, the standardization and continuity can be met.展开更多
Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is ...Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..展开更多
Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturban...Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.展开更多
Level control in flotation columns is an important factor that influences the recovery and the grade of concentrate from the column. A flotation column is a nonlinear, multi-variable problem with changeable parameters...Level control in flotation columns is an important factor that influences the recovery and the grade of concentrate from the column. A flotation column is a nonlinear, multi-variable problem with changeable parameters that traditional methods have difficulty controlling. We have applied fuzzy control methods to the flotation column and tested the performance of the design by Matlab/Simulink simulation. The simulations show that level control in the flotation column becomes smoother and more rapid with the fuzzy controller. Compared to PID control methods the overshoot in valve position, the adjustment time, and the robustness of the controller are all improved. This indicates that it is suitable to model fuzzy controllers in applications for the study of automatic control of flotation column.展开更多
文摘The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a benchmark for testing control algorithms. This paper studies the use of fuzzy control method to study the stability control problem of a triple inverted pendulum system. By the linear model of the system, the feedback weight matrix of the LQR optimal control and the feedback parameters of the linear optimal control are designed to determine the parameters of the fuzzy controller. The simulation results show that the proposed method can achieve the stability control of the three stage inverted pendulum, and has good dynamic performance with simple parameter selection.
文摘The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.
基金Assistance provided by Council of scientific and industrial research(CSIR),Government of India,under the acknowledgment number 143460/2K19/1(File:09/969(0013)/2020-EMR-I)and Siksha O Anusandhan(Deemed to be University).
文摘This paper presents a combined control and modulation technique to enhance the power quality(PQ)and power reliability(PR)of a hybrid energy system(HES)through a single-phase 11-level cascaded H-bridge inverter(11-CHBI).The controller and inverter specifically regulate the HES and meet the load demand.To track optimum power,a Modified Perturb and Observe(MP&O)technique is used for HES.Ultra-capacitor(UCAP)based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions.For an improved PQ and PR,a two-way current control strategy such as the main controller(MC)and auxiliary controller(AC)is suggested for the 11-CHBI operation.MC is used to regulate the active current component through the fuzzy controller(FC),and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller(ANN-PI).By tracking the reference signals fromMC and AC,a novel hybrid pulse widthmodulation(HPWM)technique is proposed for the 11-CHBI operation.To justify and analyze the MATLAB/Simulink software-based designed model,the robust controller performance is tested through numerous steady-state and dynamic state case studies.
文摘The super-maneuver flight performance has a very high tactical value, and the development of this tactical value has great significance. A discussion is devoted to the study of intelligent control methods and technologies of real-time distributed 3-dimensional animation simulation for the super-maneuverable attack of new generational fighter in this paper. A flight control system of super-maneuver is reconstructed by adopting three layers BP neural networks of number 3, and the fire/flight coupler is designed by introducing a fuzzy control rule whose universe of discourse and gain are regulated adaptively on the line. Furthermore, a new method of real-time distributed 3-dimensional animation simulation is put forward, and a real-time distributed 3-dimensional animation simulation tool platform is constructed in this paper. The simulation result is lifelike, perceivable directly and useful.
基金Project(BB200300088) supported by the Commission of Science Technology and Industry for National Defence Fund ofChina
文摘Through simulation analyses of vacuum counter-pressure casting fuzzy control systems based on MATLAB, fuzzy control systems designed by simulation can track technical route established well. When transmission functions of vacuum counter-pressure casting controlled objects are changed in operation, fuzzy control systems can carry on self-regulation and stabilize quickly, and embody the advantages of fleet response velocity and little adjusting quantity. The design of vacuum counter-pressure casting fuzzy control systems is accelerated and improved greatly by simulation based on MATLAB. Meanwhile, their design is accurate and reliable. Moreover, microstructure and properties of thin-wall aluminum alloy castings are improved effectively by using fuzzy control systems.
基金supported by the Shenyang Science and Technology Program(grant number 22-301-1-10).
文摘The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.
文摘To solve the problem of self-balancing two-wheeled vehicle, this article presents double cascade PID control algorithm. This method reduces the coupling of balance control, speed control and direction control, because of the special system structure. This article successfully solved the sensor fusion of gyroscope and accelerometer by using Kalman filtering algorithm, and adding in fuzzy PID algorithm to improve the flexibility of the steering system, thus greatly improving the accuracy and response rate of the system.
文摘In order to deal with the complex process that incurs serious time delay, enormous inertia and nonlinear problems, fuzzy simulation human intelligent control algorithm rules are established. The fuzzy simulation human intelligent controller and the hardware with the single-chip microcomputer are designed and the anti-interference measures to the whole system are provided.
基金This project is supported by Foundation for University Key Teacher by Ministry of Education of China
文摘A new control scheme, the hybrid fuzzy control method, for active dampingsuspension system is presented. The scheme is the result of effective combination of the statisticaloptimal control method based on the statistical property of suspension system, with the bang-bangcontrol method based on the real-time characteristics of suspension system. Computer simulations areperformed to compare the effectiveness of hybrid fuzzy control scheme with that of optimal dampingcontrol, bang-bang control, and passive suspension. It takes the effects of time-variant factorsinto full account. The superiority of the proposed hybrid fuzzy control scheme for active dampingsuspension to the passive suspension is verified in the experiment study.
文摘On the simple continuously variable transmission (CVT) driveline model, the design of adaptive fuzzy control system for CVT vehicle is presented. The adaptive fuzzy control system consists of a scaling factor self-tuning fuzzy-PI throttle controller, and a hybrid fuzzy-PID CVT ratio and brake controller. The presented adaptive fuzzy control strategy is vehicle model independent, which depends only on the instantaneous vehicle states, but does not depend on vehicle parameters. So it has good robustness against uncertain vehicle parameters and exogenous load disturbance. Simulation results show that the proposed adaptive fuzzy strategy has good adaptability and practicality value.
文摘A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.
基金This project is supported by National Natural Science Foundation of China (No.50005026)
文摘To develop cruise control system of an automobile with the metal pushing V-belt type CVT,the dynamic model of automobile travelling longitudinally is established, and the fuzzy controller of control system is designed. Considering uncertainty system parameter and exterior resistance disturbances, the stability of controller is investigated by simulating. The results of its simulation show that the fuzzy controller designed has practicability.
文摘A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.
文摘According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric transmission based on brushless DC motor. A fuzzy controller is designed with continuous fuzzy variables and the simulation module of the aft power chain is proved by test. The fuzzy controller controls the process of continuously variable transmission steadily and the acceleration of vehicle is quick according to simulation results. The elementary performance exhibited in the simulation is a foundation for the further study of the electric transmission track vehicle.
文摘A fuzzy controller of the winding/unwinding control system used in jig-dyeing machine is introduced,which is superior to the one with conventional optimal PID controller in convergence speed and stability.Its mathematical model and transfer function are presented based on mechanism of the winding/unwinding control system.Simulation of the fuzzy controller carried out in the MATLAB(Simulink)environment proves that the control system based on fuzzy controller is superior in quality,precision and operation to a conventional optimal PID controller.The outlined experimental results also show the effectiveness and the robustness of the fuzzy PID controller in good dynamic performance,high robustness to parameter variation and disturbance.
文摘Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria.
文摘The fuzzy numerical value analysis method is adopted for the first time, which solves the problem of nanometer electro-thermal in filming process, The key technique is embodied by controlling the time distribution, temperature and press in the filming process. The concrete technique of filming is showed by establishing the fuzzy mumbership function of above three indexes, which improves the precision of the materials of nanometer electro-thermal in hot-working. At the same time, the principles of the fuzzy relationship mapping inversion (FRMI) is put forward, Therefore, the standardization and continuity can be met.
文摘Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..
基金National High-tech Research and Development Program of China (2009AA04Z412)"111" ProjectBUAA Fund of Graduate Education and Development
文摘Passive torque servo system (PTSS) simulates aerodynamic load and exerts the load on actuation system, but PTSS endures position coupling disturbance from active motion of actuation system, and this inherent disturbance is called extra torque. The most important issue for PTSS controller design is how to eliminate the influence of extra torque. Using backstepping technique, adaptive fuzzy torque control (AFTC) algorithm is proposed for PTSS in this paper, which reflects the essential characteristics of PTSS and guarantees transient tracking performance as well as final tracking accuracy. Takagi-Sugeno (T-S) fuzzy logic system is utilized to compensate parametric uncertainties and unstructured uncertainties. The output velocity of actuator identified model is introduced into AFTC aiming to eliminate extra torque. The closed-loop stability is studied using small gain theorem and the control system is proved to be semiglobally uniformly ultimately bounded. The proposed AFTC algorithm is applied to an electric load simulator (ELS), and the comparative experimental results indicate that AFTC controller is effective for PTSS.
基金support from the Fundamental Research Funds for the Central Universitiesthe National Key Technology R & D Program in the 11th Five Year Plan of China (No. 2008BAB31B03)
文摘Level control in flotation columns is an important factor that influences the recovery and the grade of concentrate from the column. A flotation column is a nonlinear, multi-variable problem with changeable parameters that traditional methods have difficulty controlling. We have applied fuzzy control methods to the flotation column and tested the performance of the design by Matlab/Simulink simulation. The simulations show that level control in the flotation column becomes smoother and more rapid with the fuzzy controller. Compared to PID control methods the overshoot in valve position, the adjustment time, and the robustness of the controller are all improved. This indicates that it is suitable to model fuzzy controllers in applications for the study of automatic control of flotation column.