In an unbound area, many methods have been proposed to design fuzzy truck backer control system. For a bound area, we consider designing fuzzy truck backer control systems using the searching in tables algorithm in ...In an unbound area, many methods have been proposed to design fuzzy truck backer control system. For a bound area, we consider designing fuzzy truck backer control systems using the searching in tables algorithm in this paper. New control rule tables are established, and experiment results show that the new control rule tables are better than the old ones.展开更多
We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtaine...We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtained information to up-date the routing tables. Routing decisions can be made by the fuzzy logic technique based on local information about the current network state and the knowledge constructed by a previous set of behaviors of other agents. The fuzzy logic technique allows multiple constraints such as path delay and path utilization to be considered in a simple and intuitive way. Simulation tests show that AFAR outperforms OSPF, AntNet and ASR, three of the currently most important state-of-the-art algorithms, in terms of end-to-end delay, packet delivery, and packet drop ratio. AFAR is a promising alternative for routing of data in next generation networks.展开更多
文摘In an unbound area, many methods have been proposed to design fuzzy truck backer control system. For a bound area, we consider designing fuzzy truck backer control systems using the searching in tables algorithm in this paper. New control rule tables are established, and experiment results show that the new control rule tables are better than the old ones.
基金Project supported by the Iranian Telecommunication Research Center
文摘We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtained information to up-date the routing tables. Routing decisions can be made by the fuzzy logic technique based on local information about the current network state and the knowledge constructed by a previous set of behaviors of other agents. The fuzzy logic technique allows multiple constraints such as path delay and path utilization to be considered in a simple and intuitive way. Simulation tests show that AFAR outperforms OSPF, AntNet and ASR, three of the currently most important state-of-the-art algorithms, in terms of end-to-end delay, packet delivery, and packet drop ratio. AFAR is a promising alternative for routing of data in next generation networks.