Laparoscopic and endoscopic cooperative surgery(LECS)is a hybrid minimally invasive technique originally developed for treatment of gastric submucosal tumors.Several modifications of LECS—including inverted LECS,non-...Laparoscopic and endoscopic cooperative surgery(LECS)is a hybrid minimally invasive technique originally developed for treatment of gastric submucosal tumors.Several modifications of LECS—including inverted LECS,non-exposed endoscopic wall-inversion surgery,and closed LECS have evolved over a period of time to address the earlier concerns about peritoneal contamination and tumor seeding.These innovations have led to the application of combined laparoendoscopic techniques to several gastrointestinal(GI)lesions such as the duodenum,colon,and rectum.This minireview explores the evolution,current applications,and future potential of laparoendoscopic surgery in GI diseases.展开更多
Recently, a wide range of food-derived phytochemical compounds and their synthetic derivatives have been proposed for cancer treatment. Unfortunately, data available in related literature focus on the anti-cancer prop...Recently, a wide range of food-derived phytochemical compounds and their synthetic derivatives have been proposed for cancer treatment. Unfortunately, data available in related literature focus on the anti-cancer properties of compounds derived from edible plants, while very little is known about those derived from non-edible plants. And thus, the underlying mechanisms of their anti-cancer effects are yet to be elucidated. This review collates the available data on the anti-cancer activities of six phytochemical-derived compounds from edible and non-edible plants, i.e.展开更多
Although gastroenteropancreatic neuroendocrine neoplasms(GEP-NENs)have always been considered rare tumors,their incidence has risen over the past few decades.They represent a highly heterogeneous group of neoplasms wi...Although gastroenteropancreatic neuroendocrine neoplasms(GEP-NENs)have always been considered rare tumors,their incidence has risen over the past few decades.They represent a highly heterogeneous group of neoplasms with several prognostic factors,including disease stage,proliferative index(Ki67),and tumor differentiation.Most of these neoplasms express somatostatin receptors on the cell surface,a feature that has important implications in terms of prognosis,diagnosis,and therapy.Although International Guidelines propose algorithms aimed at guiding therapeutic strategies,GEP-NEN patients are still very different from one another,and the need for personalized treatment continues to increase.Radical surgery is always the best option when feasible;however,up to 80%of cases are metastatic upon diagnosis.Regarding medical treatments,as GEP-NENs are characterized by relatively long overall survival,multiple therapy lines are adopted during the lifetime of these patients,but the optimum sequence to be followed has never been clearly defined.Furthermore,although new molecular markers aimed at predicting the response to therapy,as well as prognostic scores,are currently being studied,their application is still far from being part of daily clinical practice.As they represent a complex disease,with therapeutic protocols that are not completely standardized,GEP-NENs require a multidisciplinary approach.This review will provide an overview of the available therapeutic options for GEP-NENs and attempts to clarify the possible approaches for the management of these patients and to discuss future perspectives in this field.展开更多
Developing an anthropogenic carbon dioxides(CO_(2))emissions monitoring and verification support(MVS)capacity is essential to support the Global Stocktake(GST)and ratchet up Nationally Determined Contributions(NDCs).T...Developing an anthropogenic carbon dioxides(CO_(2))emissions monitoring and verification support(MVS)capacity is essential to support the Global Stocktake(GST)and ratchet up Nationally Determined Contributions(NDCs).The 2019 IPCC refinement proposes top-down inversed CO_(2)emissions,primarily from fossil fuel(FFCO_(2)),as a viable emission dataset.Despite substantial progress in directly inferring FFCO_(2)emissions from CO_(2)observations,substantial challenges remain,particularly in distinguishing local CO_(2)enhancements from the high background due to the long atmospheric lifetime.Alternatively,using short-lived and co-emitted nitrogen dioxide(NO_(2))as a proxy in FFCO_(2)emission inversion has gained prominence.This methodology is broadly categorized into plume-based and emission ratios(ERs)-based inversion methods.In the plume-based methods,NO_(2)observations act as locators,constraints,and validators for deciphering CO_(2)plumes downwind of sources,typically at point source and city scales.The ERs-based inversion approach typically consists of two steps:inferring NO_(2)-based nitrogen oxides(NO_(x))emissions and converting NO_(x)to CO_(2)emissions using CO_(2)-to-NO_(x)ERs.While integrating NO_(2)observations into FFCO_(2)emission inversion offers advantages over the direct CO_(2)-based methods,uncertainties persist,including both structural and data-related uncertainties.Addressing these uncertainties is a primary focus for future research,which includes deploying nextgeneration satellites and developing advanced inversion systems.Besides,data caveats are necessary when releasing data to users to prevent potential misuse.Advancing NO_(2)-based CO_(2)emission inversion requires interdisciplinary collaboration across multiple communities of remote sensing,emission inventory,transport model improvement,and atmospheric inversion algorithm development.展开更多
Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed pa...Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed parts frequently require post-processing or integration with other machining technologies to achieve the desired surface finish,accuracy,and mechanical properties.Ultra-precision machining(UPM)is a potential machining technology that addresses these challenges by enabling high surface quality,accuracy,and repeatability in 3D-printed components.This study provides an overview of the current state of UPM for 3D printing,including the current UPM and 3D printing stages,and the application of UPM to 3D printing.Following the presentation of current stage perspectives,this study presents a detailed discussion of the benefits of combining UPM with 3D printing and the opportunities for leveraging UPM on 3D printing or supporting each other.In particular,future opportunities focus on cutting tools manufactured via 3D printing for UPM,UPM of 3D-printed components for real-world applications,and post-machining of 3D-printed components.Finally,future prospects for integrating the two advanced manufacturing technologies into potential industries are discussed.This study concludes that UPM is a promising technology for 3D-printed components,exhibiting the potential to improve the functionality and performance of 3D-printed products in various applications.It also discusses how UPM and 3D printing can complement each other.展开更多
Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland ...Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland river basins,EN optimization is of significance in ensuring regional ecological security and virtuous cycle of ecosystems.In addition,EN is a dynamically changing structural system that is more applicable to the regional development by optimizing it from comprehensive future development perspective.EN of Shiyang River basin was constructed on account of the circuit theory,and land use/cover changes(LUCC)of the basin in 2035 was predicted by PLUS model,so as to explore the ecological conservation priorities and formulate optimization strategies.54 ecological sources(ESs)were identified,covering an area of 12,198 km^(2),mainly in the southern basin.133 ecological corridors(ECs)with an area of 3,176.92 km^(2)were extracted.38 ecological pinchpoints(EPs)and 22 ecological barriers(EBs)were identified respectively,which were mainly distributed in the lower basin.To effectively enhance the connectivity of EN in Minqin County,which has the worst ecological environment,we added five stepping stones based on the Ant Forest project.In addition,the optimal EPS is selected according to the development and limitation needs of inland river basins and the threat degree of warning points(WPs)under different scenarios.Scientific and reasonable optimization of future urban layout to prevent WPs can effectively alleviate the contradiction between ecological protection and economic development.The study is intended to provide basis for ecological sustainable development and rational planning territorial space in Shiyang River basin,as well as opinion for EN optimization in inland river basin.展开更多
Super-long span bridges demand high design requirements and involve many difficulties when constructed,which is an important indicator to reflect the bridge technical level of a country.Over the past three decades,a l...Super-long span bridges demand high design requirements and involve many difficulties when constructed,which is an important indicator to reflect the bridge technical level of a country.Over the past three decades,a large percentage of the new long-span bridges around the world were built in China,and thus,abundant technological innovations and experience have been accumulated during the design and construction.This paper aims to review and summarize the design and construction practices of the superstructure,the substructure,and the steel deck paving of the long-span bridges during the past decades as well as the current operation status of the existing long-span bridges in China.A future perspective was given on the developing trend of high-speed railway bridge,bridge over deep-sea,health monitoring and maintenance,intellectualization,standard system,and information technology,which is expected to guide the development direction for the construction of future super long-span bridges and promote China to become a strong bridge construction country.展开更多
Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of e...Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of evidences have unveiled that CD47-based combination therapy exhibits a superior anti-cancer effect.Latest clinical trials about CD47 have adopted the regimen of collaborating with other therapies or developing CD47-directed bispecific antibodies,indicating the combination strategy as a general trend of the future.In this review,clinical and preclinical cases about the current combination strategies targeting CD47 are collected,their underlying mechanisms of action are discussed,and ideas from future perspectives are shared.展开更多
Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional opti...Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this work, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices, and comment on the current status and future perspectives of MoS2-based pulsed lasers.展开更多
Purpose:To explore the relationship between digital literacy and the employability of college students,and to investigate the mechanism by which future time perspective and career decision self-efficacy play a role.Me...Purpose:To explore the relationship between digital literacy and the employability of college students,and to investigate the mechanism by which future time perspective and career decision self-efficacy play a role.Method:A survey was conducted on 577 college students using the Digital Literacy Scale,Employability Scale,Career Decision Self-Efficacy Scale,and Future Time Perspective Scale.Results:(1)Digital literacy,future time perspective,career decision self-efficacy,and employability are all significantly positively correlated with each other(r=0.65-0.78,P<0.001).(2)Digital literacy significantly positively predicts future time perspective,career decision self-efficacy,and employability.At the same time,future time perspective and career decision self-efficacy can both positively predict employability significantly.(3)Future time perspective and career decision self-efficacy have a parallel mediating effect between digital literacy and the employability of vocational undergraduate students.Conclusion:Digital literacy can directly affect college students’employability and can also indirectly affect college students’employability through future time perspective and career decision self-efficacy.展开更多
Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is com...Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is commonly used in the treatment of various conditions such as autism and Parkinson's disease.However,there is limited reporting on the use of foot reflexology therapy for infants with sensorineural hearing loss(SNHL).Currently,there is no definitive conclusion on how foot reflexology therapy can influence hearing.This editorial holds some guiding significance regarding this clinical issue.The aim is to present physiological evidence of how foot reflexology therapy can impact infants with SNHL,thereby enhancing clinician’s awareness of foot reflexology in treating infants with SNHL.展开更多
The advent of 6G wireless technology,which offers previously unattainable data rates,very low latency,and compatibility with a wide range of communication devices,promises to transform the networking environment compl...The advent of 6G wireless technology,which offers previously unattainable data rates,very low latency,and compatibility with a wide range of communication devices,promises to transform the networking environment completely.The 6G wireless proposals aim to expand wireless communication’s capabilities well beyond current levels.This technology is expected to revolutionize how we communicate,connect,and use the power of the digital world.However,maintaining secure and efficient data management becomes crucial as 6G networks grow in size and complexity.This study investigates blockchain clustering and artificial intelligence(AI)approaches to ensure a reliable and trustworthy communication in 6G.First,the mechanisms and protocols of blockchain clustering that provide a trusted and effective communication infrastructure for 6G networks are presented.Then,AI techniques for network security in 6G are studied.The integration of AI and blockchain to ensure energy efficiency in 6Gnetworks is addressed.Next,this paper presents howthe 6G’s speed and bandwidth enables AI and the easy management of virtualized systems.Using terahertz connections is sufficient to have virtualized systems move compute environments as well as data.For instance,a computing environment can follow potential security violations while leveraging AI.Such virtual machines can store their findings in blockchains.In 6G scenarios,case studies and real-world applications of AI-powered secure blockchain clustering are given.Moreover,challenges and promising future research opportunities are highlighted.These challenges and opportunities provide insights from the most recent developments and point to areas where AI and blockchain further ensure security and efficiency in 6G networks.展开更多
Pancreatic ductal adenocarcinoma(PDAC) is a worldwide public health concern. Despite extensive research efforts toward improving diagnosis and treatment, the 5-year survival rate at best is approximately 15%. This dis...Pancreatic ductal adenocarcinoma(PDAC) is a worldwide public health concern. Despite extensive research efforts toward improving diagnosis and treatment, the 5-year survival rate at best is approximately 15%. This dismal figure can be attributed to a variety of factors including lack of adequate screening methods, late symptom onset, and treatment resistance. Pancreatic ductal adenocarcinoma remains a grim diagnosis with a high mortality rate and a significant psychological burden for patients and their families. In recent years artificial intelligence(AI) has permeated the medical field at an accelerated pace, bringing potential new tools that carry the promise of improving diagnosis and treatment of a variety of diseases. In this review we will summarize the landscape of AI in diagnosis and treatment of PDAC.展开更多
Leonurus japonicas Houtt.,has been recorded as“light body and long life”properties in the oldest classical medicinal book Shennong Bencao Jing thousands of years ago.Herba leonuri,also named Chinese Motherwort or Si...Leonurus japonicas Houtt.,has been recorded as“light body and long life”properties in the oldest classical medicinal book Shennong Bencao Jing thousands of years ago.Herba leonuri,also named Chinese Motherwort or Siberian Motherwort,has the effects of activating blood circulation,regulating menstruation,diuresis and detumescence,clearing heat and detoxifying,and is known as the“sacred medicine of gynecology.”It has been well known by doctors and usually used in the treatment of common gynecological diseases in clinic.Leonurine is a very important alkaloid in Herba leonuri,which has many biological activities such as anti-oxidation,anti-inflammation,and anti-apoptosis.Diseases of the cardiovascular system and central nervous system are“major health threats”that threaten human life and health worldwide,however,many drugs have certain side effects right now.This paper reviews the potential molecular therapeutic effects of leonurine on cardiovascular system and central nervous system diseases,highlights the current findings of research progress,and focuses on the therapeutic effects of leonurine in various diseases.At present,leonurine is in the stage of clinical experiment,and we hope that our summary can provide guidance for its future molecular mechanism study and clinical application.展开更多
The circulation of the optic nerve head is derived from two sources;the prelaminar,laminar and retrolaminar circulation are mainly arise from the posterior ciliary artery circulation,whereas the nerve fiber layer over...The circulation of the optic nerve head is derived from two sources;the prelaminar,laminar and retrolaminar circulation are mainly arise from the posterior ciliary artery circulation,whereas the nerve fiber layer over the optic disc is fed by central retinal artery(1,2).A variety of optic neuropathies with ischemic,glaucomatous,inflammatory and hereditary etiologies may affect the展开更多
Chronic heart failure(HF)is a clinical syndrome with high morbidity and mor-tality worldwide.Cardiac rehabilitation(CR)is a medically supervised program designed to maintain or improve cardiovascular health of people ...Chronic heart failure(HF)is a clinical syndrome with high morbidity and mor-tality worldwide.Cardiac rehabilitation(CR)is a medically supervised program designed to maintain or improve cardiovascular health of people living with HF,recommended by both American and European guidelines.A CR program con-sists of a multispecialty group including physicians,nurses,physiotherapists,trainers,nutritionists,and psychologists with the common purpose of improving functional capacity and quality of life of chronic HF patients.Physical activity,lifestyle,and psychological support are core components of a successful CR program.CR has been shown to be beneficial in all ejection fraction categories in HF and most patients,who are stable under medication,are capable of participating.An individualized exercise prescription should be developed on the basis of a baseline evaluation in all patients.The main modalities of exercise training are aerobic exercise and muscle strength training of different intensity and frequency.It is important to set the appropriate clinical outcomes from the beginning,in order to assess the effectiveness of a CR program.There are still significant limitations that prevent patients from participating in these programs and need to be solved.A significant limitation is the generally low quality of research in CR and the presence of negative trials,such as the rehabilitation after myocardial infarction trial,where comprehensive rehabilitation following myocardial infraction had no important effect on mortality,morbidity,risk factors,or health-related quality of life or activity.In the present editorial,we present all the updated knowledge and recommendations in CR programs.展开更多
Crohn’s disease(CD)is a chronic inflammatory disease of the digestive tract.The incidence of pediatric CD is increasing and is currently 2.5-11.4 per 100000 world-wide.Notably,approximately 25%of children with CD dev...Crohn’s disease(CD)is a chronic inflammatory disease of the digestive tract.The incidence of pediatric CD is increasing and is currently 2.5-11.4 per 100000 world-wide.Notably,approximately 25%of children with CD develop stricturing CD(SCD)that requires intervention.Symptomatic stricturing diseases refractory to pharmacological management frequently require non-pharmacological interventions.Non-pharmacological therapeutic strategies include endoscopic balloon dilatation,stricturoplasty,and surgical resection of the strictured seg-ment.However,strictures tend to recur postoperatively regardless of treatment modality.The lifetime risk of surgery in patients with childhood SCD remains at 50%-90%.Thus,new and emerging strategies,advanced diagnostic tools,and minimally invasive approaches are under investigation to improve the outcomes and overall quality of life of pediatric patients with SCD.展开更多
Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in ...Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in bone reconstruction.We review the history of MBs and their excellent biocompatibility,biodegradability and osteopromotive properties,highlighting them as candidates for a new generation of biodegradable orthopedic implants.In particular,the results reported in the field-specific literature(280 articles)in recent decades are dissected with respect to the extensive variety of MBs for orthopedic applications,including Mg/Mg alloys,bioglasses,bioceramics,and polymer materials.We also summarize the osteogenic mechanism of MBs,including a detailed section on the physiological process,namely,the enhanced osteogenesis,promotion of osteoblast adhesion and motility,immunomodulation,and enhanced angiogenesis.Moreover,the merits and limitations of current bone grafts and substitutes are compared.The objective of this review is to reveal the strong potential of MBs for their use as agents in bone repair and regeneration and to highlight issues that impede their clinical translation.Finally,the development and challenges of MBs for transplanted orthopedic materials are discussed.展开更多
Mining is the foundation of modern industrial development.In the context of the“carbon peaking and carbon neutrality”era,countries have put forward the development strategy of“adhering to the harmonious coexistence...Mining is the foundation of modern industrial development.In the context of the“carbon peaking and carbon neutrality”era,countries have put forward the development strategy of“adhering to the harmonious coexistence of humans and nature.”The ongoing progress and improvement of filling mining technology have provided significant advantages,such as“green mining,safe,efficient,and low-carbon emission,”which is crucial to the comprehensive utilization of mining solid waste,environmental protection,and safety of re-mining.This review paper describes the development history of metal mine filling mining in China and the characteristics of each stage.The excitation mechanism and current research status of producing cementitious materials from blast furnace slag and other industrial wastes are then presented,and the concept of developing cementitious materials for backfill based on the whole solid waste is proposed.The advances in the mechanical characteristics of cemented backfill are elaborated on four typical levels:static mechanics,dynamic mechanics,mechanical influencing factors,and multi-scale mechanics.The working/rheological characteristics of the filling slurry are presented,given the importance of the filling materials conveying process.Finally,the future perspectives of mining with backfill are discussed based on the features of modern filling concepts to provide the necessary theoretical research value for filling mining.展开更多
文摘Laparoscopic and endoscopic cooperative surgery(LECS)is a hybrid minimally invasive technique originally developed for treatment of gastric submucosal tumors.Several modifications of LECS—including inverted LECS,non-exposed endoscopic wall-inversion surgery,and closed LECS have evolved over a period of time to address the earlier concerns about peritoneal contamination and tumor seeding.These innovations have led to the application of combined laparoendoscopic techniques to several gastrointestinal(GI)lesions such as the duodenum,colon,and rectum.This minireview explores the evolution,current applications,and future potential of laparoendoscopic surgery in GI diseases.
文摘Recently, a wide range of food-derived phytochemical compounds and their synthetic derivatives have been proposed for cancer treatment. Unfortunately, data available in related literature focus on the anti-cancer properties of compounds derived from edible plants, while very little is known about those derived from non-edible plants. And thus, the underlying mechanisms of their anti-cancer effects are yet to be elucidated. This review collates the available data on the anti-cancer activities of six phytochemical-derived compounds from edible and non-edible plants, i.e.
文摘Although gastroenteropancreatic neuroendocrine neoplasms(GEP-NENs)have always been considered rare tumors,their incidence has risen over the past few decades.They represent a highly heterogeneous group of neoplasms with several prognostic factors,including disease stage,proliferative index(Ki67),and tumor differentiation.Most of these neoplasms express somatostatin receptors on the cell surface,a feature that has important implications in terms of prognosis,diagnosis,and therapy.Although International Guidelines propose algorithms aimed at guiding therapeutic strategies,GEP-NEN patients are still very different from one another,and the need for personalized treatment continues to increase.Radical surgery is always the best option when feasible;however,up to 80%of cases are metastatic upon diagnosis.Regarding medical treatments,as GEP-NENs are characterized by relatively long overall survival,multiple therapy lines are adopted during the lifetime of these patients,but the optimum sequence to be followed has never been clearly defined.Furthermore,although new molecular markers aimed at predicting the response to therapy,as well as prognostic scores,are currently being studied,their application is still far from being part of daily clinical practice.As they represent a complex disease,with therapeutic protocols that are not completely standardized,GEP-NENs require a multidisciplinary approach.This review will provide an overview of the available therapeutic options for GEP-NENs and attempts to clarify the possible approaches for the management of these patients and to discuss future perspectives in this field.
基金supported by the National Natural Science Foundation of China(No.42105094).
文摘Developing an anthropogenic carbon dioxides(CO_(2))emissions monitoring and verification support(MVS)capacity is essential to support the Global Stocktake(GST)and ratchet up Nationally Determined Contributions(NDCs).The 2019 IPCC refinement proposes top-down inversed CO_(2)emissions,primarily from fossil fuel(FFCO_(2)),as a viable emission dataset.Despite substantial progress in directly inferring FFCO_(2)emissions from CO_(2)observations,substantial challenges remain,particularly in distinguishing local CO_(2)enhancements from the high background due to the long atmospheric lifetime.Alternatively,using short-lived and co-emitted nitrogen dioxide(NO_(2))as a proxy in FFCO_(2)emission inversion has gained prominence.This methodology is broadly categorized into plume-based and emission ratios(ERs)-based inversion methods.In the plume-based methods,NO_(2)observations act as locators,constraints,and validators for deciphering CO_(2)plumes downwind of sources,typically at point source and city scales.The ERs-based inversion approach typically consists of two steps:inferring NO_(2)-based nitrogen oxides(NO_(x))emissions and converting NO_(x)to CO_(2)emissions using CO_(2)-to-NO_(x)ERs.While integrating NO_(2)observations into FFCO_(2)emission inversion offers advantages over the direct CO_(2)-based methods,uncertainties persist,including both structural and data-related uncertainties.Addressing these uncertainties is a primary focus for future research,which includes deploying nextgeneration satellites and developing advanced inversion systems.Besides,data caveats are necessary when releasing data to users to prevent potential misuse.Advancing NO_(2)-based CO_(2)emission inversion requires interdisciplinary collaboration across multiple communities of remote sensing,emission inventory,transport model improvement,and atmospheric inversion algorithm development.
基金supported by the State Key Laboratories in Hong Kong,China,from the Innovation and Technology Commission(project code:BBR3)of the Government of the Hong Kong Special Administrative Region,Chinathe Research Office(project codes:BBXM and BBX)of The Hong Kong Polytechnic University,China+1 种基金the Project of Strategic Importance(project codes:1-ZE0G and SBBD)of The Hong Kong Polytechnic University,Chinaand the Research Committee(project code:RMAC)of The Hong Kong Polytechnic University,China。
文摘Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed parts frequently require post-processing or integration with other machining technologies to achieve the desired surface finish,accuracy,and mechanical properties.Ultra-precision machining(UPM)is a potential machining technology that addresses these challenges by enabling high surface quality,accuracy,and repeatability in 3D-printed components.This study provides an overview of the current state of UPM for 3D printing,including the current UPM and 3D printing stages,and the application of UPM to 3D printing.Following the presentation of current stage perspectives,this study presents a detailed discussion of the benefits of combining UPM with 3D printing and the opportunities for leveraging UPM on 3D printing or supporting each other.In particular,future opportunities focus on cutting tools manufactured via 3D printing for UPM,UPM of 3D-printed components for real-world applications,and post-machining of 3D-printed components.Finally,future prospects for integrating the two advanced manufacturing technologies into potential industries are discussed.This study concludes that UPM is a promising technology for 3D-printed components,exhibiting the potential to improve the functionality and performance of 3D-printed products in various applications.It also discusses how UPM and 3D printing can complement each other.
基金funded by the National Natural Science Foundation of China(Grant No.42101276)。
文摘Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland river basins,EN optimization is of significance in ensuring regional ecological security and virtuous cycle of ecosystems.In addition,EN is a dynamically changing structural system that is more applicable to the regional development by optimizing it from comprehensive future development perspective.EN of Shiyang River basin was constructed on account of the circuit theory,and land use/cover changes(LUCC)of the basin in 2035 was predicted by PLUS model,so as to explore the ecological conservation priorities and formulate optimization strategies.54 ecological sources(ESs)were identified,covering an area of 12,198 km^(2),mainly in the southern basin.133 ecological corridors(ECs)with an area of 3,176.92 km^(2)were extracted.38 ecological pinchpoints(EPs)and 22 ecological barriers(EBs)were identified respectively,which were mainly distributed in the lower basin.To effectively enhance the connectivity of EN in Minqin County,which has the worst ecological environment,we added five stepping stones based on the Ant Forest project.In addition,the optimal EPS is selected according to the development and limitation needs of inland river basins and the threat degree of warning points(WPs)under different scenarios.Scientific and reasonable optimization of future urban layout to prevent WPs can effectively alleviate the contradiction between ecological protection and economic development.The study is intended to provide basis for ecological sustainable development and rational planning territorial space in Shiyang River basin,as well as opinion for EN optimization in inland river basin.
文摘Super-long span bridges demand high design requirements and involve many difficulties when constructed,which is an important indicator to reflect the bridge technical level of a country.Over the past three decades,a large percentage of the new long-span bridges around the world were built in China,and thus,abundant technological innovations and experience have been accumulated during the design and construction.This paper aims to review and summarize the design and construction practices of the superstructure,the substructure,and the steel deck paving of the long-span bridges during the past decades as well as the current operation status of the existing long-span bridges in China.A future perspective was given on the developing trend of high-speed railway bridge,bridge over deep-sea,health monitoring and maintenance,intellectualization,standard system,and information technology,which is expected to guide the development direction for the construction of future super long-span bridges and promote China to become a strong bridge construction country.
基金supported by The Science and Technology Development Fund,Macao SAR,China(File No.:0129/2019/A3)Internal Research Grant of the State Key Laboratory of Quality Research in Chinese Medicine,University of Macao(File No.:QRCM-IRG2022-016,China)+1 种基金the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund(Guangdong-Hong Kong-Macao Joint Lab,File No.:2020B1212030006,China)the National Natural Science Foundation of China(File No.:81973516)。
文摘Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of evidences have unveiled that CD47-based combination therapy exhibits a superior anti-cancer effect.Latest clinical trials about CD47 have adopted the regimen of collaborating with other therapies or developing CD47-directed bispecific antibodies,indicating the combination strategy as a general trend of the future.In this review,clinical and preclinical cases about the current combination strategies targeting CD47 are collected,their underlying mechanisms of action are discussed,and ideas from future perspectives are shared.
基金support from the Royal Academy of Engineering (RAEng)
文摘Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this work, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices, and comment on the current status and future perspectives of MoS2-based pulsed lasers.
基金Guangdong Business and Technology University Undergraduate Vocational Education Reform Project(GDGSGY2023007)。
文摘Purpose:To explore the relationship between digital literacy and the employability of college students,and to investigate the mechanism by which future time perspective and career decision self-efficacy play a role.Method:A survey was conducted on 577 college students using the Digital Literacy Scale,Employability Scale,Career Decision Self-Efficacy Scale,and Future Time Perspective Scale.Results:(1)Digital literacy,future time perspective,career decision self-efficacy,and employability are all significantly positively correlated with each other(r=0.65-0.78,P<0.001).(2)Digital literacy significantly positively predicts future time perspective,career decision self-efficacy,and employability.At the same time,future time perspective and career decision self-efficacy can both positively predict employability significantly.(3)Future time perspective and career decision self-efficacy have a parallel mediating effect between digital literacy and the employability of vocational undergraduate students.Conclusion:Digital literacy can directly affect college students’employability and can also indirectly affect college students’employability through future time perspective and career decision self-efficacy.
基金Supported by the Fundamental Research Funds for the Central Universities,No.2022CDJYGRH-004.
文摘Foot reflexology is a non-invasive and safe complementary therapy that works by massaging the reflex zones of the feet and exerts systemic or whole-body regulation through meridian nerve conduction.This therapy is commonly used in the treatment of various conditions such as autism and Parkinson's disease.However,there is limited reporting on the use of foot reflexology therapy for infants with sensorineural hearing loss(SNHL).Currently,there is no definitive conclusion on how foot reflexology therapy can influence hearing.This editorial holds some guiding significance regarding this clinical issue.The aim is to present physiological evidence of how foot reflexology therapy can impact infants with SNHL,thereby enhancing clinician’s awareness of foot reflexology in treating infants with SNHL.
文摘The advent of 6G wireless technology,which offers previously unattainable data rates,very low latency,and compatibility with a wide range of communication devices,promises to transform the networking environment completely.The 6G wireless proposals aim to expand wireless communication’s capabilities well beyond current levels.This technology is expected to revolutionize how we communicate,connect,and use the power of the digital world.However,maintaining secure and efficient data management becomes crucial as 6G networks grow in size and complexity.This study investigates blockchain clustering and artificial intelligence(AI)approaches to ensure a reliable and trustworthy communication in 6G.First,the mechanisms and protocols of blockchain clustering that provide a trusted and effective communication infrastructure for 6G networks are presented.Then,AI techniques for network security in 6G are studied.The integration of AI and blockchain to ensure energy efficiency in 6Gnetworks is addressed.Next,this paper presents howthe 6G’s speed and bandwidth enables AI and the easy management of virtualized systems.Using terahertz connections is sufficient to have virtualized systems move compute environments as well as data.For instance,a computing environment can follow potential security violations while leveraging AI.Such virtual machines can store their findings in blockchains.In 6G scenarios,case studies and real-world applications of AI-powered secure blockchain clustering are given.Moreover,challenges and promising future research opportunities are highlighted.These challenges and opportunities provide insights from the most recent developments and point to areas where AI and blockchain further ensure security and efficiency in 6G networks.
文摘Pancreatic ductal adenocarcinoma(PDAC) is a worldwide public health concern. Despite extensive research efforts toward improving diagnosis and treatment, the 5-year survival rate at best is approximately 15%. This dismal figure can be attributed to a variety of factors including lack of adequate screening methods, late symptom onset, and treatment resistance. Pancreatic ductal adenocarcinoma remains a grim diagnosis with a high mortality rate and a significant psychological burden for patients and their families. In recent years artificial intelligence(AI) has permeated the medical field at an accelerated pace, bringing potential new tools that carry the promise of improving diagnosis and treatment of a variety of diseases. In this review we will summarize the landscape of AI in diagnosis and treatment of PDAC.
基金supported by the National Natural Science Foundation of China(No.82174080)Research Ability Improvement and Team Building Project of Young Teachers of Minzu University of China(No.2023KYQD22).
文摘Leonurus japonicas Houtt.,has been recorded as“light body and long life”properties in the oldest classical medicinal book Shennong Bencao Jing thousands of years ago.Herba leonuri,also named Chinese Motherwort or Siberian Motherwort,has the effects of activating blood circulation,regulating menstruation,diuresis and detumescence,clearing heat and detoxifying,and is known as the“sacred medicine of gynecology.”It has been well known by doctors and usually used in the treatment of common gynecological diseases in clinic.Leonurine is a very important alkaloid in Herba leonuri,which has many biological activities such as anti-oxidation,anti-inflammation,and anti-apoptosis.Diseases of the cardiovascular system and central nervous system are“major health threats”that threaten human life and health worldwide,however,many drugs have certain side effects right now.This paper reviews the potential molecular therapeutic effects of leonurine on cardiovascular system and central nervous system diseases,highlights the current findings of research progress,and focuses on the therapeutic effects of leonurine in various diseases.At present,leonurine is in the stage of clinical experiment,and we hope that our summary can provide guidance for its future molecular mechanism study and clinical application.
基金research funding from Carl Zeiss Meditec, Optos, Allergan and Genentech
文摘The circulation of the optic nerve head is derived from two sources;the prelaminar,laminar and retrolaminar circulation are mainly arise from the posterior ciliary artery circulation,whereas the nerve fiber layer over the optic disc is fed by central retinal artery(1,2).A variety of optic neuropathies with ischemic,glaucomatous,inflammatory and hereditary etiologies may affect the
文摘Chronic heart failure(HF)is a clinical syndrome with high morbidity and mor-tality worldwide.Cardiac rehabilitation(CR)is a medically supervised program designed to maintain or improve cardiovascular health of people living with HF,recommended by both American and European guidelines.A CR program con-sists of a multispecialty group including physicians,nurses,physiotherapists,trainers,nutritionists,and psychologists with the common purpose of improving functional capacity and quality of life of chronic HF patients.Physical activity,lifestyle,and psychological support are core components of a successful CR program.CR has been shown to be beneficial in all ejection fraction categories in HF and most patients,who are stable under medication,are capable of participating.An individualized exercise prescription should be developed on the basis of a baseline evaluation in all patients.The main modalities of exercise training are aerobic exercise and muscle strength training of different intensity and frequency.It is important to set the appropriate clinical outcomes from the beginning,in order to assess the effectiveness of a CR program.There are still significant limitations that prevent patients from participating in these programs and need to be solved.A significant limitation is the generally low quality of research in CR and the presence of negative trials,such as the rehabilitation after myocardial infarction trial,where comprehensive rehabilitation following myocardial infraction had no important effect on mortality,morbidity,risk factors,or health-related quality of life or activity.In the present editorial,we present all the updated knowledge and recommendations in CR programs.
文摘Crohn’s disease(CD)is a chronic inflammatory disease of the digestive tract.The incidence of pediatric CD is increasing and is currently 2.5-11.4 per 100000 world-wide.Notably,approximately 25%of children with CD develop stricturing CD(SCD)that requires intervention.Symptomatic stricturing diseases refractory to pharmacological management frequently require non-pharmacological interventions.Non-pharmacological therapeutic strategies include endoscopic balloon dilatation,stricturoplasty,and surgical resection of the strictured seg-ment.However,strictures tend to recur postoperatively regardless of treatment modality.The lifetime risk of surgery in patients with childhood SCD remains at 50%-90%.Thus,new and emerging strategies,advanced diagnostic tools,and minimally invasive approaches are under investigation to improve the outcomes and overall quality of life of pediatric patients with SCD.
基金financial support from the National Natural Science Foundation of China(No.81672230)the Natural Science Foundation of Chongqing(No.cstc2020jcyjmsxm2234)+1 种基金the Top-notch Young Talent Project of Chongqing Traditional Chinese Medicine Hospital(No.CQSZYY2020008)the Chongqing Graduate Research Innovation Project(No.CYS20199)。
文摘Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in bone reconstruction.We review the history of MBs and their excellent biocompatibility,biodegradability and osteopromotive properties,highlighting them as candidates for a new generation of biodegradable orthopedic implants.In particular,the results reported in the field-specific literature(280 articles)in recent decades are dissected with respect to the extensive variety of MBs for orthopedic applications,including Mg/Mg alloys,bioglasses,bioceramics,and polymer materials.We also summarize the osteogenic mechanism of MBs,including a detailed section on the physiological process,namely,the enhanced osteogenesis,promotion of osteoblast adhesion and motility,immunomodulation,and enhanced angiogenesis.Moreover,the merits and limitations of current bone grafts and substitutes are compared.The objective of this review is to reveal the strong potential of MBs for their use as agents in bone repair and regeneration and to highlight issues that impede their clinical translation.Finally,the development and challenges of MBs for transplanted orthopedic materials are discussed.
基金financially supported by the China Postdoctoral Science Foundation (No.2022M711432)the Shanxi Basic Research Program Youth Project,China (No.202103021223114)Taiyuan University of Technology’s School Fund,China (No.2022QN070)。
文摘Mining is the foundation of modern industrial development.In the context of the“carbon peaking and carbon neutrality”era,countries have put forward the development strategy of“adhering to the harmonious coexistence of humans and nature.”The ongoing progress and improvement of filling mining technology have provided significant advantages,such as“green mining,safe,efficient,and low-carbon emission,”which is crucial to the comprehensive utilization of mining solid waste,environmental protection,and safety of re-mining.This review paper describes the development history of metal mine filling mining in China and the characteristics of each stage.The excitation mechanism and current research status of producing cementitious materials from blast furnace slag and other industrial wastes are then presented,and the concept of developing cementitious materials for backfill based on the whole solid waste is proposed.The advances in the mechanical characteristics of cemented backfill are elaborated on four typical levels:static mechanics,dynamic mechanics,mechanical influencing factors,and multi-scale mechanics.The working/rheological characteristics of the filling slurry are presented,given the importance of the filling materials conveying process.Finally,the future perspectives of mining with backfill are discussed based on the features of modern filling concepts to provide the necessary theoretical research value for filling mining.