期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
In situ tumor vaccination with adenovirus vectors encoding measles virus fusogenic membrane proteins and cytokines 被引量:4
1
作者 Dennis Hoffmann Wibke Bayer Oliver Wildner 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第22期3063-3070,共8页
AIM: To evaluate whether intratumoral expression of measles virus fusogenic membrane glycoproteins H and F (MV-FMG), encoded by an adenovirus vector Ad.MV-HI F, alone or in combination with local coexpression of cy... AIM: To evaluate whether intratumoral expression of measles virus fusogenic membrane glycoproteins H and F (MV-FMG), encoded by an adenovirus vector Ad.MV-HI F, alone or in combination with local coexpression of cytokines (IL-2, IL-12, IL-18, IL-21 or GM-CSF), can serve as a platform for inducing tumor-specific immune responses in colon cancer.METHODS: We used confocal laser scanning microscopy and flow cytometry to analyze cell-cell fusion after expression of MV-FMG by dye colocalization. In a syngeneic bilateral subcutaneous MC38 and Colon26 colon cancer model in C57BL/6 and BALB/c mice, we assessed the effect on both the directly vector-treated tumor as well as the contralateral, not directly vector- treated tumor. We assessed the induction of a tumorspecific cytotoxic T lymphocyte (CTL) response with a lactate dehydrogenase (LDH) release assay.RESULTS: We demonstrated in vitro that transduction of MC38 and Colon26 cells with Ad.MV-H/F resulted in dye colocalization, indicative of cell-cell fusion, in addition, in the syngeneic bilateral tumor model we demonstrated a significant regression of the directly vector-inoculated tumor upon intratumoral expression of MV-FMG alone or in combination with the tested cytokines. We observed the highest anti-neoplastic efficacy with MV-FMG and lL-21 coexpression. The degree of tumor regression of the not directly vector-treated tumor correlated with the anti-neoplastic response of the directly vector-treated tumor. This regression was mediated by a tumor-specific CTL response.CONCLUSION: Our data indicate that intratumoral expression of measles virus fusogenic membrane glycoproteins is a promising tool both for direct tumor treatment as well as for tumor vaccination approaches that can be further enhanced by cytokine coexpression. 展开更多
关键词 Adenovirus vectors Measles virus fusogenic membrane glycoproteins Colorectal cancer INTERLEUKINS
暂未订购
Fusogenic charge-reversal vector:a viropexis-mimicking system for gene delivery
2
作者 Ning Gu 《Science China Materials》 SCIE EI CSCD 2015年第12期913-914,共2页
Gene therapy is known highly effective for treatment of many diseases;however,its wide use has been severely bottlenecked by lack of safe and effective delivery vectors[1].Cationic polymers are safe nonviral gene vect... Gene therapy is known highly effective for treatment of many diseases;however,its wide use has been severely bottlenecked by lack of safe and effective delivery vectors[1].Cationic polymers are safe nonviral gene vectors with great potential for large-scale applications[2],and widely used to condense the large macromolecules into cationic polymer/DNA complexes(polyplexes)nanoparticles,protect- 展开更多
关键词 GENE DNA fusogenic charge-reversal vector
原文传递
Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury 被引量:9
3
作者 Riyi Shi 《Neuroscience Bulletin》 SCIE CAS CSCD 2013年第4期460-466,共7页
The integrity of the neuronal membrane is crucial for its function and cellular survival; thus, ineffective repair of damaged membranes may be one of the key elements underlying the neuronal degeneration and overall f... The integrity of the neuronal membrane is crucial for its function and cellular survival; thus, ineffective repair of damaged membranes may be one of the key elements underlying the neuronal degeneration and overall functional loss that occurs after spinal cord injury (SCI). It has been shown that polyethylene glycol (PEG) can reseal axonal membranes following various injuries in multiple in vitro and in vivo injury models. In addition, PEG may also directly prevent the effects of mitochondria-derived oxidative stress on intracellular components. Thus, PEG repairs mechanically injured cells by at least two distinct pathways: resealing of the disrupted plasma membrane and direct protection of mitochondria. Besides repairing primary membrane damage, PEG treatment also results in significant attenuation of oxidative stress, likely due to its capacity to reseal the membrane, thereby breaking the cycle of cellular damage and free-radical production. Based on this, in addition to the practicality of its application, we expect that PEG may be established as an effective treatment for SCI where membrane disruption and mitochondriai damage are implicated. 展开更多
关键词 axolemmal reseal fusogen cutaneous trunci muscle somatosensory evoked potentianeuroprotection
原文传递
Bacterial and cancerous cell membrane fused liposome coordinates with PD-L1 inhibitor for cancer immunotherapy
4
作者 Xianjin Luo Chenglong Li +8 位作者 Zhaofei Guo Hairui Wang Penghui He Yuanhao Zhao Yi Lin Chunting He Yingying Hou Yongshun Zhang Guangsheng Du 《Nano Research》 SCIE EI CSCD 2024年第9期8389-8401,共13页
Although tumor cell membranes with broad-spectrum antigens have been explored for cancer vaccines for decades,their relatively poor capacity to stimulate immune responses,especially cellular immune responses,has limit... Although tumor cell membranes with broad-spectrum antigens have been explored for cancer vaccines for decades,their relatively poor capacity to stimulate immune responses,especially cellular immune responses,has limited their application.Here,we presented a novel bacterial and cancerous cell membrane fusogenic liposome for co-delivering cell membrane-derived antigens and adjuvants.Meanwhile,a programmed death-ligand 1(PD-L1)inhibitor,JQ-1,was incorporated into the formulation to tackle the up-regulated PD-L1 expression of antigen-presenting cells(APCs)upon vaccination,thereby augmenting its anti-tumor efficacy.The fusogenic liposomes demonstrated significantly improved cellular uptake by APCs and effectively suppressed PD-L1 expression in bone marrow-derived dendritic cells(BMDCs)in vitro.Following subcutaneous vaccination,the nano-vaccines efficiently drained to the tumor-draining lymph nodes(TDLNs),and significantly inhibited PD-L1 expression of both dendritic cells(DCs)and macrophages within the TDLNs and tumors.As a result,the liposomal vaccine induced robust innate and cellular immune responses and inhibited tumor growth in a colorectal carcinoma-burden mouse model.In summary,the fabricated cell membrane-based fusogenic liposomes offer a safe,effective,and easily applicable strategy for tumor immunotherapy and hold potential for personalized cancer immunotherapy. 展开更多
关键词 fusogenic liposome tumor cell membrane ADJUVANT programmed death-ligand 1(PD-L1)inhibitor tumor draining lymph nodes
原文传递
仿病毒膜融合型纳米囊泡在体制备CAR-T细胞 被引量:5
5
作者 赵贵 张玥 +1 位作者 许从飞 王均 《Science Bulletin》 SCIE EI CAS CSCD 2024年第3期354-366,共13页
Engineered T cells expressing chimeric antigen receptor(CAR)exhibit high response rates in B-cell malignancy treatments and possess therapeutic potentials against various diseases.However,the complicated ex vivo produ... Engineered T cells expressing chimeric antigen receptor(CAR)exhibit high response rates in B-cell malignancy treatments and possess therapeutic potentials against various diseases.However,the complicated ex vivo production process of CAR-T cells limits their application.Herein,we use virus-mimetic fusogenic nanovesicles(FuNVs)to produce CAR-T cells in vivo via membrane fusion-mediated CAR protein delivery.Briefly,the FuNVs are modified using T-cell fusogen,adapted from measles virus or reovirus fusogens via displaying anti-CD3 single-chain variable fragment.The FuNVs can efficiently fuse with the T-cell membrane in vivo,thereby delivering the loaded anti-CD19(aCD19)CAR protein onto T-cells to produce aCD19 CAR-T cells.These aCD19 CAR-T cells alone or in combination with anti-OX40 antibodies can treat B-cell lymphoma without inducing cytokine release syndrome.Thus,our strategy provides a novel method for engineering T cells into CAR-T cells in vivo and can further be employed to deliver other therapeutic membrane proteins. 展开更多
关键词 CAR-T NANOVESICLE Fusogen Cancer immunotherapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部