This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion f...This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random parameter under estimation. First, we formulate the problem of distributed estimation fusion in the LMV setting. In this setting, the fused estimator is a weighted sum of local estimates with a matrix weight. We show that the set of weights is optimal if and only if it is a solution of a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrix Ck.Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with known prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provide an off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises.展开更多
In interpretation of remote sensing images, it is possible that some images which are supplied by different sensors become incomprehensible. For better visual perception of these images, it is essential to operate ser...In interpretation of remote sensing images, it is possible that some images which are supplied by different sensors become incomprehensible. For better visual perception of these images, it is essential to operate series of pre-processing and elementary corrections and then operate a series of main processing steps for more precise analysis on the images. There are several approaches for processing which are depended on the type of remote sensing images. The discussed approach in this article, i.e. image fusion, is the use of natural colors of an optical image for adding color to a grayscale satellite image which gives us the ability for better observation of the HR image of OLI sensor of Landsat-8. This process with emphasis on details of fusion technique has previously been performed;however, we are going to apply the concept of the interpolation process. In fact, we see many important software tools such as ENVI and ERDAS as the most famous remote sensing image processing tools have only classical interpolation techniques (such as bi-linear (BL) and bi-cubic/cubic convolution (CC)). Therefore, ENVI- and ERDAS-based researches in image fusion area and even other fusion researches often don’t use new and better interpolators and are mainly concentrated on the fusion algorithm’s details for achieving a better quality, so we only focus on the interpolation impact on fusion quality in Landsat-8 multispectral images. The important feature of this approach is to use a statistical, adaptive, and edge-guided interpolation method for improving the color quality in the images in practice. Numerical simulations show selecting the suitable interpolation techniques in MRF-based images creates better quality than the classical interpolators.展开更多
The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about th...The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about the relationship between the two estimates.Firstly,the authorsconsider the classical linear model in which the coefficient matrix of the linear model is deterministic,and the necessary and sufficient condition for equivalence of the two estimates is derived.Moreover,under certain conditions on variance matrix invertibility,the two estimates can be identical providedthat they use the same a priori information of the parameter being estimated.Secondly,the authorsconsider the linear model with random coefficient matrix which is called the extended linear model;under certain conditions on variance matrix invertibility,it is proved that the former outperforms thelatter when using the same a priori information of the parameter.展开更多
文摘This paper shows that a general multisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random parameter under estimation. First, we formulate the problem of distributed estimation fusion in the LMV setting. In this setting, the fused estimator is a weighted sum of local estimates with a matrix weight. We show that the set of weights is optimal if and only if it is a solution of a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrix Ck.Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with known prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provide an off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises.
文摘In interpretation of remote sensing images, it is possible that some images which are supplied by different sensors become incomprehensible. For better visual perception of these images, it is essential to operate series of pre-processing and elementary corrections and then operate a series of main processing steps for more precise analysis on the images. There are several approaches for processing which are depended on the type of remote sensing images. The discussed approach in this article, i.e. image fusion, is the use of natural colors of an optical image for adding color to a grayscale satellite image which gives us the ability for better observation of the HR image of OLI sensor of Landsat-8. This process with emphasis on details of fusion technique has previously been performed;however, we are going to apply the concept of the interpolation process. In fact, we see many important software tools such as ENVI and ERDAS as the most famous remote sensing image processing tools have only classical interpolation techniques (such as bi-linear (BL) and bi-cubic/cubic convolution (CC)). Therefore, ENVI- and ERDAS-based researches in image fusion area and even other fusion researches often don’t use new and better interpolators and are mainly concentrated on the fusion algorithm’s details for achieving a better quality, so we only focus on the interpolation impact on fusion quality in Landsat-8 multispectral images. The important feature of this approach is to use a statistical, adaptive, and edge-guided interpolation method for improving the color quality in the images in practice. Numerical simulations show selecting the suitable interpolation techniques in MRF-based images creates better quality than the classical interpolators.
基金supported in part by the National Natural Science Foundation of China under Grant Nos 60232010, 60574032the Project 863 under Grant No. 2006AA12A104
文摘The optimally weighted least squares estimate and the linear minimum variance estimateare two of the most popular estimation methods for a linear model.In this paper,the authors makea comprehensive discussion about the relationship between the two estimates.Firstly,the authorsconsider the classical linear model in which the coefficient matrix of the linear model is deterministic,and the necessary and sufficient condition for equivalence of the two estimates is derived.Moreover,under certain conditions on variance matrix invertibility,the two estimates can be identical providedthat they use the same a priori information of the parameter being estimated.Secondly,the authorsconsider the linear model with random coefficient matrix which is called the extended linear model;under certain conditions on variance matrix invertibility,it is proved that the former outperforms thelatter when using the same a priori information of the parameter.