Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-mi...Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-midpoint(CMP)gather.In the proposed method,a convolutional neural network(CNN)Encoder and two long short-term memory networks(LSTMs)are used to extract spatial and temporal features from seismic signals,respectively,and a CNN Decoder is used to recover RMS velocity and interval velocity of underground media from various feature vectors.To address the problems of unstable gradients and easily fall into a local minimum in the deep neural network training process,we propose to use Kaiming normal initialization with zero negative slopes of rectifi ed units and to adjust the network learning process by optimizing the mean square error(MSE)loss function with the introduction of a freezing factor.The experiments on testing dataset show that CNN-LSTM fusion deep neural network can predict RMS velocity as well as interval velocity more accurately,and its inversion accuracy is superior to that of single neural network models.The predictions on the complex structures and Marmousi model are consistent with the true velocity variation trends,and the predictions on fi eld data can eff ectively correct the phase axis,improve the lateral continuity of phase axis and quality of stack section,indicating the eff ectiveness and decent generalization capability of the proposed method.展开更多
The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relative...The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.展开更多
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ...In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.展开更多
A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image f...A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network(CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN(ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.展开更多
Action recognition is important for understanding the human behaviors in the video,and the video representation is the basis for action recognition.This paper provides a new video representation based on convolution n...Action recognition is important for understanding the human behaviors in the video,and the video representation is the basis for action recognition.This paper provides a new video representation based on convolution neural networks(CNN).For capturing human motion information in one CNN,we take both the optical flow maps and gray images as input,and combine multiple convolutional features by max pooling across frames.In another CNN,we input single color frame to capture context information.Finally,we take the top full connected layer vectors as video representation and train the classifiers by linear support vector machine.The experimental results show that the representation which integrates the optical flow maps and gray images obtains more discriminative properties than those which depend on only one element.On the most challenging data sets HMDB51 and UCF101,this video representation obtains competitive performance.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and fac...A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and face biometric traits. Normalized score level fusion approach is applied and optimized, encoded for matching decision. It is a multilevel wavelet, phase based fusion algorithm. This robust multimodal biometric algorithm increases the security level, accuracy, reduces memory size and equal error rate and eliminates unimodal biometric algorithm vulnerabilities.展开更多
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)...To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.展开更多
Presents the fusion analysis of the charging and discharging characteristics of MH Ni batteries in wide applications by neural network data fusion method to generate a specific vector and the use of this specific vect...Presents the fusion analysis of the charging and discharging characteristics of MH Ni batteries in wide applications by neural network data fusion method to generate a specific vector and the use of this specific vector for selection of MH Ni batteries, and the comparison of two results of selection.展开更多
Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working envir...Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working environment.This paper presents a novel fault diagnosis approach for gear transmissions based on convolutional neural networks(CNNs)and decision-level sensor fusion.In the proposed approach,a CNN is first utilized to classify the faults of a gear transmission based on the acquired signals from each of the sensors.Raw sensory data is sent directly into the CNN models without manual feature extraction.Then,classifier level sensor fusion is carried out to achieve improved classification accuracy by fusing the classification results from the CNN models.Experimental study is conducted,which shows the superior performance of the developed method in the classification of different gear transmission conditions in an automated industrial machine.The presented approach also achieves end-to-end learning that ean be applied to the fault elassification of a gear transmission under various operating eonditions and with signals from different types of sensors.展开更多
The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here...The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here the measurements from radar are transformed from the polar coordinate system to the Cartesian coordinate through a BP neural network. With this approach, the systematic errors are removed as well as the coordinate is transformed. The efficiency of this method is demonstrated by simulation, and the result show that this approach could remove the systematic errors effectively and the DAR are closer to real position than DBR.展开更多
According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method bas...According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application.展开更多
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n...The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.展开更多
The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius ...The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.展开更多
The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal...The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area.展开更多
A multimodal fusion classifier is presented based on neural networks (NNs) learned with hints for automatic spontaneous affect recognition. In case that different channels can provide com- plementary information, fe...A multimodal fusion classifier is presented based on neural networks (NNs) learned with hints for automatic spontaneous affect recognition. In case that different channels can provide com- plementary information, features are utilized from four behavioral cues: frontal-view facial expres- sion, profile-view facial expression, shoulder movement, and vocalization (audio). NNs are used in both single cue processing and multimodal fusion. Coarse categories and quadrants in the activation- evaluation dimensional space are utilized respectively as the heuristic information (hints) of NNs during training, aiming at recognition of basic emotions. With the aid of hints, the weights in NNs could learn optimal feature groupings and the subtlety and complexity of spontaneous affective states could be better modeled. The proposed method requires low computation effort and reaches high recognition accuracy, even if the training data is insufficient. Experiment results on the Semaine nat- uralistic dataset demonstrate that our method is effective and promising.展开更多
Plasma equilibrium parameters such as position, X-point, internal inductance, and poloidal beta are essential information for efficient and safe operation of tokamak. In this work, the artificial neural network is use...Plasma equilibrium parameters such as position, X-point, internal inductance, and poloidal beta are essential information for efficient and safe operation of tokamak. In this work, the artificial neural network is used to establish a non-linear relationship between the measured diagnostic signals and selected equilibrium parameters. The estimation process is split into a preliminary classification of the kind of equilibrium(limiter or divertor) and subsequent inference of the equilibrium parameters. The training and testing datasets are generated by the tokamak simulation code(TSC), which has been benchmarked with the EAST experimental data. The noise immunity of the inference model is tested. Adding noise to model inputs during training process is proved to have a certain ability for maintaining performance.展开更多
A Layered Interactive Neural-fuzzy Fusion System, which is a general fusion model is presented with its structure and algorithm studied systematically. The system, according to the layering technique, is logically com...A Layered Interactive Neural-fuzzy Fusion System, which is a general fusion model is presented with its structure and algorithm studied systematically. The system, according to the layering technique, is logically composed of a hierarchical set of subsystems. Subsystems with the same rank make up a specific layer. Corresponding fusion techniques are adopted for each layer. Thus a general scheme from the whole to the detail is obtained for the design of tile fusion system. Furthermore, since the element of the bottom layer can be defined by object-oriented analyzing method, the flexibility of the fusion system is consequently improved. A practical neural-fuzzy fusion system is developed for data processing problem and its performance is proved to be better than the old ones.展开更多
Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across ...Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy.展开更多
基金financially supported by the Key Project of National Natural Science Foundation of China (No. 41930431)the Project of National Natural Science Foundation of China (Nos. 41904121, 41804133, and 41974116)Joint Guidance Project of Natural Science Foundation of Heilongjiang Province (No. LH2020D006)
文摘Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-midpoint(CMP)gather.In the proposed method,a convolutional neural network(CNN)Encoder and two long short-term memory networks(LSTMs)are used to extract spatial and temporal features from seismic signals,respectively,and a CNN Decoder is used to recover RMS velocity and interval velocity of underground media from various feature vectors.To address the problems of unstable gradients and easily fall into a local minimum in the deep neural network training process,we propose to use Kaiming normal initialization with zero negative slopes of rectifi ed units and to adjust the network learning process by optimizing the mean square error(MSE)loss function with the introduction of a freezing factor.The experiments on testing dataset show that CNN-LSTM fusion deep neural network can predict RMS velocity as well as interval velocity more accurately,and its inversion accuracy is superior to that of single neural network models.The predictions on the complex structures and Marmousi model are consistent with the true velocity variation trends,and the predictions on fi eld data can eff ectively correct the phase axis,improve the lateral continuity of phase axis and quality of stack section,indicating the eff ectiveness and decent generalization capability of the proposed method.
基金supported by funding from the Natural Science Foundation of Jiangsu Province (Grant No. BK20171457)the 2013 Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201306078)+1 种基金the National Natural Science Foundation of China (Grant No. 41301399)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.
基金This project was supported by the National Natural Science Foundation of China (60572038)
文摘In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.
基金supported by the National Natural Science Foundation of China(No.61174193)
文摘A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network(CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN(ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2015AA016306)National Nature Science Foundation of China(61231015)+2 种基金Internet of Things Development Funding Project of Ministry of Industry in 2013(25)Technology Research Program of Ministry of Public Security(2016JSYJA12)the Nature Science Foundation of Hubei Province(2014CFB712)
文摘Action recognition is important for understanding the human behaviors in the video,and the video representation is the basis for action recognition.This paper provides a new video representation based on convolution neural networks(CNN).For capturing human motion information in one CNN,we take both the optical flow maps and gray images as input,and combine multiple convolutional features by max pooling across frames.In another CNN,we input single color frame to capture context information.Finally,we take the top full connected layer vectors as video representation and train the classifiers by linear support vector machine.The experimental results show that the representation which integrates the optical flow maps and gray images obtains more discriminative properties than those which depend on only one element.On the most challenging data sets HMDB51 and UCF101,this video representation obtains competitive performance.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
文摘A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and face biometric traits. Normalized score level fusion approach is applied and optimized, encoded for matching decision. It is a multilevel wavelet, phase based fusion algorithm. This robust multimodal biometric algorithm increases the security level, accuracy, reduces memory size and equal error rate and eliminates unimodal biometric algorithm vulnerabilities.
基金Supported by the National Natural Science Foundation of China(60905012,60572058)
文摘To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.
文摘Presents the fusion analysis of the charging and discharging characteristics of MH Ni batteries in wide applications by neural network data fusion method to generate a specific vector and the use of this specific vector for selection of MH Ni batteries, and the comparison of two results of selection.
基金supported byan ENGAGE Grant from the Natural Sciences and Engineering Research Council of Canada(NSERC),[funding reference number 11R01296].
文摘Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working environment.This paper presents a novel fault diagnosis approach for gear transmissions based on convolutional neural networks(CNNs)and decision-level sensor fusion.In the proposed approach,a CNN is first utilized to classify the faults of a gear transmission based on the acquired signals from each of the sensors.Raw sensory data is sent directly into the CNN models without manual feature extraction.Then,classifier level sensor fusion is carried out to achieve improved classification accuracy by fusing the classification results from the CNN models.Experimental study is conducted,which shows the superior performance of the developed method in the classification of different gear transmission conditions in an automated industrial machine.The presented approach also achieves end-to-end learning that ean be applied to the fault elassification of a gear transmission under various operating eonditions and with signals from different types of sensors.
文摘The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here the measurements from radar are transformed from the polar coordinate system to the Cartesian coordinate through a BP neural network. With this approach, the systematic errors are removed as well as the coordinate is transformed. The efficiency of this method is demonstrated by simulation, and the result show that this approach could remove the systematic errors effectively and the DAR are closer to real position than DBR.
文摘According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application.
文摘The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.
文摘The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.
文摘The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area.
基金Supported by the National Natural Science Foundation of China(60905006)the Basic Research Fund of Beijing Institute ofTechnology(20120842006)
文摘A multimodal fusion classifier is presented based on neural networks (NNs) learned with hints for automatic spontaneous affect recognition. In case that different channels can provide com- plementary information, features are utilized from four behavioral cues: frontal-view facial expres- sion, profile-view facial expression, shoulder movement, and vocalization (audio). NNs are used in both single cue processing and multimodal fusion. Coarse categories and quadrants in the activation- evaluation dimensional space are utilized respectively as the heuristic information (hints) of NNs during training, aiming at recognition of basic emotions. With the aid of hints, the weights in NNs could learn optimal feature groupings and the subtlety and complexity of spontaneous affective states could be better modeled. The proposed method requires low computation effort and reaches high recognition accuracy, even if the training data is insufficient. Experiment results on the Semaine nat- uralistic dataset demonstrate that our method is effective and promising.
基金Project supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Grant No.2018YFE0302100)the National Key Research and Development Program of China(Grant Nos.2017YFE0300500 and 2017YFE0300501)+1 种基金the National Natural Science Foundation of China(Grant Nos.11575245,11805236,and 11905256)Young and Middle-aged Academic Back-bone Finance Fund from Anhui Medical University
文摘Plasma equilibrium parameters such as position, X-point, internal inductance, and poloidal beta are essential information for efficient and safe operation of tokamak. In this work, the artificial neural network is used to establish a non-linear relationship between the measured diagnostic signals and selected equilibrium parameters. The estimation process is split into a preliminary classification of the kind of equilibrium(limiter or divertor) and subsequent inference of the equilibrium parameters. The training and testing datasets are generated by the tokamak simulation code(TSC), which has been benchmarked with the EAST experimental data. The noise immunity of the inference model is tested. Adding noise to model inputs during training process is proved to have a certain ability for maintaining performance.
文摘A Layered Interactive Neural-fuzzy Fusion System, which is a general fusion model is presented with its structure and algorithm studied systematically. The system, according to the layering technique, is logically composed of a hierarchical set of subsystems. Subsystems with the same rank make up a specific layer. Corresponding fusion techniques are adopted for each layer. Thus a general scheme from the whole to the detail is obtained for the design of tile fusion system. Furthermore, since the element of the bottom layer can be defined by object-oriented analyzing method, the flexibility of the fusion system is consequently improved. A practical neural-fuzzy fusion system is developed for data processing problem and its performance is proved to be better than the old ones.
文摘Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy.