期刊文献+
共找到1,033篇文章
< 1 2 52 >
每页显示 20 50 100
Weighted Multi-sensor Data Level Fusion Method of Vibration Signal Based on Correlation Function 被引量:7
1
作者 BIN Guangfu JIANG Zhinong +1 位作者 LI Xuejun DHILLON B S 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期899-904,共6页
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery... As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement. 展开更多
关键词 vibration signal MULTI-SENSOR data level fusion correlation function weighted value
在线阅读 下载PDF
A novel approximation of basic probability assignment based on rank-level fusion 被引量:5
2
作者 Yang Yi Han Deqiang +1 位作者 Han Chongzhao Cao Feng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期993-999,共7页
Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become... Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become the bottleneck of belief functions theory in real applications. The basic probability assignment (BPA) approximations, which can reduce the complexity of the BPAs, are always used to reduce the computational cost of evidence combination. In this paper, both the cardinalities and the mass assignment values of focal elements are used as the criteria of reduction. The two criteria are jointly used by using rank-level fusion. Some experiments and related analyses are provided to illustrate and justify the proposed new BPA approximation approach. 展开更多
关键词 Belief approximation Distance of evidence Evidence combination Information fusion Rank-level fusion
原文传递
A Local Contrast Fusion Based 3D Otsu Algorithm for Multilevel Image Segmentation 被引量:13
3
作者 Ashish Kumar Bhandari Arunangshu Ghosh Immadisetty Vinod Kumar 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期200-213,共14页
To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level ... To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations. 展开更多
关键词 1D Otsu 2D Otsu 3D Otsu image fusion local contrast multi-level image segmentation
在线阅读 下载PDF
A Multi-Detector Security Architecture with Local Feature-Level Fusion for Multimodal Biometrics
4
作者 Sorin Soviany Sorin Puscoci Cristina Soviany 《通讯和计算机(中英文版)》 2013年第9期1200-1218,共19页
关键词 生物特征识别 特征级融合 多探测器 安全架构 多模态 生物识别系统 识别模型 生物识别技术
在线阅读 下载PDF
Four Levels Anterior Cervical Discectomy and Fusion by Stand Alone PEEK Cages 被引量:1
5
作者 Islam Alaghory Hany Abdel Gawwad Soliman Saeed Mostafa Abdelhameed 《Open Journal of Modern Neurosurgery》 2018年第2期162-173,共12页
Background: cervical spondylotic myelopathy is a common health problem that neurosurgeons face in Egypt. The aim of this study is to evaluate the efficacy of PEEK cage only in 4 levels anterior cervical discectomy as ... Background: cervical spondylotic myelopathy is a common health problem that neurosurgeons face in Egypt. The aim of this study is to evaluate the efficacy of PEEK cage only in 4 levels anterior cervical discectomy as one of surgical option other than anterior cervical corpectomy, fixation by plat or posterior approach for cervical laminectomy, and assessment of post spinal surgery pain. Methods: this prospective study on 28 patients with cervical spondylotic myelopathy (CSM) over a period of 3 years (between April 2012 and April 2015) with mean period of follow up 30 months. We have done anterior cervical discectomy with fixation by cage only for all cases with perioperative assessment and scoring clinically and radiologically (Japanese Orthopaedic Association [JOA] scores, Visual Analogue Scale [VAS] scores for assessment of neck and arm pain, perioperative parameters (hospital stay, blood loss, operative time), the European Myelopathy Scoring (EMS) and Odom’s criteria, and the incidence of complication,post spinal surgery pain assessment). Results: clinical outcome was excellent (28.55), good (50%) and fair (21.5) according to Odom criteria. The European Myelopathy Scoring (EMS), improved from 10 to 16. The mean JOA score improved from 10.1 ± 2.1 to 14.2 ± 2.3. Fusion failure had been seen in 4 patients in one level for each secondary to anterior displacement of the cage with no other major complications. Conclusion: 4 levels anterior cervical discectomy with PEEK cage only is an effective, save and less costly with less post operative complication and hospital stay and less post spinal surgery pain. 展开更多
关键词 Four levels CERVICAL DISC Peek CAGE fusion CERVICAL Spondylotic MYELOPATHY
暂未订购
基于TUFusion的无人机可见光与红外融合检测算法研究
6
作者 刘宏宇 《软件》 2025年第8期39-43,共5页
针对无人机复杂环境下目标检测的鲁棒性问题,本文提出了一种基于TUFusion的多模态融合检测算法。通过结合TUFusion网络的混合编码器与复合注意力机制,实现了可见光与红外图像的特征级深度融合;引入Dempster-Shafer(DS)证据理论,对多源... 针对无人机复杂环境下目标检测的鲁棒性问题,本文提出了一种基于TUFusion的多模态融合检测算法。通过结合TUFusion网络的混合编码器与复合注意力机制,实现了可见光与红外图像的特征级深度融合;引入Dempster-Shafer(DS)证据理论,对多源检测结果进行决策级融合,有效降低了误检与漏检。在DroneVehicle数据集上的实验表明,算法在mAP@0.5、精确率与召回率上分别达到0.905、92.1%和89.7%,显著优于传统像素级融合与单一模态检测。该方法通过多层次信息融合,为无人机全天候目标检测提供了高精度、高鲁棒性的解决方案。 展开更多
关键词 多模态融合 无人机目标检测 TUfusion网络 红外与可见光图像 决策级融合
在线阅读 下载PDF
Neural Network Based Normalized Fusion Approaches for Optimized Multimodal Biometric Authentication Algorithm 被引量:2
7
作者 E. Sujatha A. Chilambuchelvan 《Circuits and Systems》 2016年第8期1199-1206,共8页
A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and fac... A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and face biometric traits. Normalized score level fusion approach is applied and optimized, encoded for matching decision. It is a multilevel wavelet, phase based fusion algorithm. This robust multimodal biometric algorithm increases the security level, accuracy, reduces memory size and equal error rate and eliminates unimodal biometric algorithm vulnerabilities. 展开更多
关键词 Multimodal Biometrics Score level fusion Approach Neural Network OPTIMIZATION
在线阅读 下载PDF
HOG-VGG:VGG Network with HOG Feature Fusion for High-Precision PolSAR Terrain Classification 被引量:1
8
作者 Jiewen Li Zhicheng Zhao +2 位作者 Yanlan Wu Jiaqiu Ai Jun Shi 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期1-15,共15页
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ... This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively. 展开更多
关键词 PolSAR terrain classification high⁃precision HOG⁃VGG feature representation completeness elevation multi⁃level feature fusion
在线阅读 下载PDF
Machine Learning for Data Fusion:A Fuzzy AHP Approach for Open Issues
9
作者 Vinay Kukreja Asha Abraham +3 位作者 K.Kalaiselvi K.Deepa Thilak Shanmugasundaram Hariharan Shih-Yu Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期2899-2914,共16页
Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original dat... Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original data,which are often imperfect,inconsistent,complex,and uncertain.Traditional data fusion methods like probabilistic fusion,set-based fusion,and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data.Data fusion is the process of integrating multiple data sources.Data filtering means examining a dataset to exclude,rearrange,or apportion data according to the criteria.Different sensors generate a large amount of data,requiring the development of machine learning(ML)algorithms to overcome the challenges of traditional methods.The advancement in hardware acceleration and the abundance of data from various sensors have led to the development of machine learning(ML)algorithms,expected to address the limitations of traditional methods.However,many open issues still exist as machine learning algorithms are used for data fusion.From the literature,nine issues have been identified irrespective of any application.The decision-makers should pay attention to these issues as data fusion becomes more applicable and successful.A fuzzy analytical hierarchical process(FAHP)enables us to handle these issues.It helps to get the weights for each corresponding issue and rank issues based on these calculated weights.The most significant issue identified is the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic knowledge for multimodal data cannot be captured. 展开更多
关键词 Signal level fusion feature level fusion decision level fusion fuzzy hierarchical process machine learning
在线阅读 下载PDF
Fault diagnosis method of AC motor rolling bearing based on heterogeneous data fusion of current and infrared image
10
作者 LIU Peijin GUO Zichen +2 位作者 HE Lin YAN Dongyang ZHANG Xiangrui 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期558-570,共13页
In order to improve the accuracy of rolling bearing fault diagnosis when the motor is running under non-stationary conditions,an AC motor rolling bearing fault diagnosis method was proposed based on heterogeneous data... In order to improve the accuracy of rolling bearing fault diagnosis when the motor is running under non-stationary conditions,an AC motor rolling bearing fault diagnosis method was proposed based on heterogeneous data fusion of current and infrared images.Firstly,VMD was used to decompose the motor current signal and extract the low-frequency component of the bearing fault signal.On this basis,the current signal was transformed into a two-dimensional graph suitable for convolutional neural network,and the data set was classified by convolutional neural network and softmax classifier.Secondly,the infrared image was segmented and the fault features were extracted,so as to calculate the similarity with the infrared image of the fault bearing in the library,and further the sigmod classifier was used to classify the data.Finally,a decision-level fusion method was introduced to fuse the current signal with the infrared image signal diagnosis result according to the weight,and the motor bearing fault diagnosis result was obtained.Through experimental verification,the proposed fault diagnosis method could be used for the fault diagnosis of motor bearing outer ring under the condition of load variation,and the accuracy of fault diagnosis can reach 98.85%. 展开更多
关键词 current signal infrared image decision level fusion rolling bearing fault diagnosis
在线阅读 下载PDF
Enhanced Biometric Score Fusion Scheme Based on the AdaBoost Algorithm
11
作者 Wei-Yang Lin Chih-Yang Lin Chuan-Jheng Yang 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第2期187-193,共7页
Information fusion in biometric systems, either multimodal or intramodal fusion, usually provides an improvement in recognition performance. This paper presents an improved score-level fusion scheme called boosted sco... Information fusion in biometric systems, either multimodal or intramodal fusion, usually provides an improvement in recognition performance. This paper presents an improved score-level fusion scheme called boosted score fusion. The proposed framework is a two-stage design where an existing fusion algorithm is adopted at the first stage. At the second stage, the weights obtained by the AdaBoost algorithm are utilized to boost the performance of the previously fused results. The experimental results demonstrate that the performance of several score-level fusion methods can be improved by using the presented method. 展开更多
关键词 Index Terms-AdaBoost biometric authentication face recognition score-level fusion.
在线阅读 下载PDF
利用多层次特征融合网络的图像异常检测算法 被引量:2
12
作者 唐俊 左金梅 +2 位作者 王科 张艳 王年 《国防科技大学学报》 北大核心 2025年第2期173-182,共10页
图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异... 图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。 展开更多
关键词 图像异常检测 伪异常 多层次特征融合 一致性约束
在线阅读 下载PDF
基于交互多模型的智能汽车环境感知信息统一融合方法研究 被引量:1
13
作者 贾鑫 李松霖 +1 位作者 佘远昇 洪峰 《汽车工程》 北大核心 2025年第6期1144-1154,共11页
针对当前智能汽车环境感知系统进行多传感信息融合时不同传感器往往分阶段融合、难以均衡发挥单一传感器精度优势和多源信息冗余优势的问题,提出了一种基于交互多模型的对象级并行结构多传感信息统一融合方法。对象级融合具有良好的模... 针对当前智能汽车环境感知系统进行多传感信息融合时不同传感器往往分阶段融合、难以均衡发挥单一传感器精度优势和多源信息冗余优势的问题,提出了一种基于交互多模型的对象级并行结构多传感信息统一融合方法。对象级融合具有良好的模块化以及封装性,并行结构能够充分利用信息冗余优势,交互多模型可以统一高效融合多源数据,弥补单一传感器的局限性。在对多源传感器数据时空对齐基础上,引入最邻近法和DS证据理论实现多传感器信息关联,并基于交互多模型进行动态统一融合。进行了实车搭载毫米波雷达和视觉系统环境感知试验,结果表明本方法能够有效提升目标车辆感知跟踪的可靠性和稳定性,提高了系统的适应能力。 展开更多
关键词 智能汽车 环境感知 对象级融合 并行滤波 交互多模型
在线阅读 下载PDF
紫外-荧光特征级融合结合CARS-BO-LSSVM的水质COD检测方法 被引量:1
14
作者 郑培超 李成林 +5 位作者 王金梅 杨琴 曾金锐 吕强 阮伟 何浩楠 《中国测试》 北大核心 2025年第4期91-99,共9页
化学需氧量(COD)是表征水体中有机物含量的重要指标。使用基于不同光谱法的算法模型可以实现地表水COD的快速准确检测,针对紫外吸收光谱法和激光诱导荧光光谱法在测量精度上的不足,提出基于紫外-荧光特征级融合的光谱检测方法。将采集... 化学需氧量(COD)是表征水体中有机物含量的重要指标。使用基于不同光谱法的算法模型可以实现地表水COD的快速准确检测,针对紫外吸收光谱法和激光诱导荧光光谱法在测量精度上的不足,提出基于紫外-荧光特征级融合的光谱检测方法。将采集的实际水样经标准化学法得到COD理化值,以氘卤灯作为紫外-可见光源和以405 nm单波长半导体激光器作为激发光源,采用自主搭建的光谱系统采集水样的紫外吸收光谱和荧光发射光谱。选择Savitzky-Golay滤波对光谱去噪平滑,由竞争性自适应重加权采样(CARS)对光谱进行特征提取,并与主成分分析、连续投影算法对比,以贝叶斯优化的最小二乘支持向量(BO-LSSVM)算法作为建模方法,分别建立基于紫外吸收光谱法、激光诱导荧光光谱法和紫外-荧光特征级融合法的预测模型。结果表明:采用紫外-荧光特征级融合法的预测模型性能优于单一光谱法,提出的基于紫外-荧光特征级融合结合CARS-BO-LSSVM模型在噪声容限和预测精度方面优于其他模型,训练集R2为0.9371、RMSE为0.2726 mg·L^(–1)、MRE为9.99%,测试集R2为0.9377、RMSE为0.2578 mg·L^(–1)、MRE为7.68%。该方法对水质光谱的非线性分析具有良好的泛化性和鲁棒性,可为水质COD的快速检测提供可靠的参考价值和研究思路。 展开更多
关键词 化学需氧量 激光诱导荧光 特征级数据融合 竞争性自适应重加权采样
在线阅读 下载PDF
特征级语义感知引导的多模态图像融合算法 被引量:1
15
作者 张梅 金叶 +1 位作者 朱金辉 贺霖 《电子与信息学报》 北大核心 2025年第8期2909-2918,共10页
在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务... 在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务,但是其效果受限于语义先验和融合任务之间的交互不足且没有考虑到不同特征差异性的影响。因此,该文提出了特征级语义感知引导的多模态图像融合算法,使语义先验知识与融合任务进行充分交互,提高融合结果在后续的分割任务中的性能。对于语义特征和融合图像特征两者的差异性,提出了双特征交互模块,以实现不同特征的充分交互和选择。对于红外和可见光两种不同模态特征的差异性,提出了多源空间注意力融合模块,以实现不同模态信息的有效集成和互补。该文在3个公共数据集上进行了实验,结果表明该方法的融合结果优于其他方法且泛化能力较好,而且在各种融合算法联合分割任务的性能比较实验中也表明了该方法在分割任务中的优越性。 展开更多
关键词 图像融合 联合分割任务 语义感知 特征级引导
在线阅读 下载PDF
多平台主被动雷达协同目标定位算法研究
16
作者 冯国彬 郭汶晟 +2 位作者 王鹏 曾利凯 薛冰 《现代防御技术》 北大核心 2025年第3期129-138,共10页
针对信息级融合检测定位精度差的问题,提出一种基于最小二乘原理的多平台主被动雷达信息级和信号级数据融合定位方法,并针对现有信号级融合算法空时配准需要目标先验信息的问题,提出了一种基于平台自身位置信息和平台间位置关系的时间... 针对信息级融合检测定位精度差的问题,提出一种基于最小二乘原理的多平台主被动雷达信息级和信号级数据融合定位方法,并针对现有信号级融合算法空时配准需要目标先验信息的问题,提出了一种基于平台自身位置信息和平台间位置关系的时间配准方法。仿真结果表明,所提方法可以有效实现目标定位,且多平台主被动雷达信号级协同相对于信息级协同、单纯主动雷达协同和单纯被动雷达协同可以得到更小的均方根误差,提高了目标的定位精度。 展开更多
关键词 多平台 主被动雷达协同 信息级融合 信号级融合 最小二乘 目标定位
在线阅读 下载PDF
基于MSF和I-InceptionNet的变工况滚动轴承故障诊断
17
作者 王进花 曹文宝 +1 位作者 周德义 曹洁 《华中科技大学学报(自然科学版)》 北大核心 2025年第5期24-30,共7页
针对滚动轴承在故障数据有限且在不同工况下采集的信号存在不同的分布特性,导致现有故障诊断方法在表现出较低的故障诊断准确率低、鲁棒性差,提出一种基于多传感器融合(MSF)和改进的InceptionNet网络(IInceptionNet)的故障诊断方法.该... 针对滚动轴承在故障数据有限且在不同工况下采集的信号存在不同的分布特性,导致现有故障诊断方法在表现出较低的故障诊断准确率低、鲁棒性差,提出一种基于多传感器融合(MSF)和改进的InceptionNet网络(IInceptionNet)的故障诊断方法.该方法首先利用多相抗混叠滤波器对采集的多种信号进行重采样,转换为红绿蓝(RGB)图像作为模型的输入,保留信号的多维信息;然后,采用注意力特征融合(AFF)方法改进InceptionNet网络的连接层,融合多传感器图像特征,提高模型的分类性能;最后,对融合后的图像进行故障状态分类.实验结果表明:所提方法在变工况条件下的故障诊断性能显著优于单一信号源及其他对比方法,特别是在数据量有限的情况下,平均诊断准确率达到98.5%,具有优越的诊断精度和鲁棒性. 展开更多
关键词 滚动轴承 故障诊断 InceptionNet网络 特征级融合 多传感器
原文传递
自动驾驶环境下车道级雷视融合SLAM
18
作者 马庆禄 蹇秋伟 +1 位作者 李美强 邹政 《汽车工程》 北大核心 2025年第6期1155-1168,共14页
为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and ma... 为提升自动驾驶车辆在多车道行驶与作业时的道路环境感知能力,提出了自动驾驶环境下车道级雷视融合方法 LLV-SLAM(lane-level LiDAR-visual fusion SLAM),并构建了适用于雷视融合的实时定位与建图算法(simultaneous localization and mapping,SLAM)。首先,在视觉特征点提取的基础上引入直方图均衡化,并利用激光雷达获取特征点深度信息,通过视觉特征跟踪以提升SLAM系统鲁棒性。其次,利用视觉关键帧信息对激光点云进行运动畸变校正,并将LeGO-LOAM(lightweight and groud-optimized lidar odometry and mapping)融入视觉ORBSLAM2(oriented FAST and rotated BRIEF SLAM2)以增强闭环检测与矫正性能,降低系统累计误差。最后,将视觉图像所获取的位姿进行坐标转换作为激光里程计的位姿初值,辅助激光雷达SLAM进行三维场景重建。实验结果表明:相比于传统的SLAM方法,融合后的LLV-SLAM方法平均定位时延减少了41.61%;在x、y、z方向上的平均定位误差分别减少了34.63%、38.16%、24.09%;在滚转角、俯仰角、偏航角方向上的平均旋转误差减少了40.8%、37.52%、39.5%。LLV-SLAM算法有效抑制了LeGO-LOAM算法的尺度漂移,实时性和鲁棒性有显著提升,能够满足自动驾驶车辆对多车道道路环境的感知需要。 展开更多
关键词 自动驾驶 同步定位与建图 雷视融合 车道级定位
在线阅读 下载PDF
坐标增强与多源采样的脑肿瘤图像分割
19
作者 蒋占军 李洋 +1 位作者 廉敬 苗新法 《计算机应用》 北大核心 2025年第3期996-1002,共7页
针对脑肿瘤图像分割模型对肿瘤区域关注度不够及易丢失空间上下文信息,导致对肿瘤区域分割效果不佳的问题,提出一种融合坐标增强学习机制(CEL)与多源采样的TransUNet脑肿瘤分割网络。首先,提出一种CEL,结合ResNetv2作为模型的浅层特征... 针对脑肿瘤图像分割模型对肿瘤区域关注度不够及易丢失空间上下文信息,导致对肿瘤区域分割效果不佳的问题,提出一种融合坐标增强学习机制(CEL)与多源采样的TransUNet脑肿瘤分割网络。首先,提出一种CEL,结合ResNetv2作为模型的浅层特征提取网络,增加对脑肿瘤区域的关注度;其次,设计深层混合采样特征提取器,并利用可变形注意力与自注意力机制对脑肿瘤的全局与局部信息进行多源采样;最后,在编码器与解码器之间设计交互层级融合(ILF)模块,从而在实现深层与浅层特征信息交互的同时减少参数的计算量。在BraTS2018和BraTS2019数据集上的实验结果表明:相较于基准TransUNet,所提模型的平均相似性系数(mDice)、平均交并比(mIoU)、平均精度均值(mAP)和平均召回率(mRecall)分别提高4.84、7.21、3.83和3.15个百分点,模型大小降低了16.9 MB。 展开更多
关键词 图像分割 多模态信息 坐标增强学习机制 混合采样 交互层级融合模块
在线阅读 下载PDF
基于多层特征融合与增强的对比图聚类
20
作者 李志明 魏贺萍 +1 位作者 张广康 尤殿龙 《计算机应用研究》 北大核心 2025年第6期1749-1754,共6页
现有大多数对比图聚类算法存在以下问题:生成节点表示时忽略了浅层网络提取的底层特征和底层结构信息;未充分利用高阶邻居节点信息;未结合置信度信息与拓扑结构信息来构建正样本对。为解决以上问题,提出了基于多层特征融合与增强的对比... 现有大多数对比图聚类算法存在以下问题:生成节点表示时忽略了浅层网络提取的底层特征和底层结构信息;未充分利用高阶邻居节点信息;未结合置信度信息与拓扑结构信息来构建正样本对。为解决以上问题,提出了基于多层特征融合与增强的对比图聚类算法。该算法首先融合不同层次网络提取的节点特征,以补充节点的底层结构信息;其次,通过节点间的局部拓扑相关性和全局语义相似度聚合节点信息,以增强节点表示的上下文约束一致性;最后,联合置信度信息和拓扑结构信息构建更多高质量正样本对,提高簇内表示一致性。实验结果表明,CGCMFFE在四种广泛使用的聚类评价指标上表现出优异的性能。理论分析和实验研究验证了CGCMFFE中节点底层特征、高阶邻居节点信息、置信度和拓扑结构信息的关键作用,证明了CGCMFFE的优越性。 展开更多
关键词 多层特征融合 对比图聚类 无监督学习
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部