Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The pa...Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.展开更多
High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this prob...High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.展开更多
Objective:To obtain fbpB-esxA fusing gene of Mycobacterium tuberculosis(MTU),express the encoded fusing protein in Escherichia coli(E.coli),identify protein acquired,and predict the structure and function of the p...Objective:To obtain fbpB-esxA fusing gene of Mycobacterium tuberculosis(MTU),express the encoded fusing protein in Escherichia coli(E.coli),identify protein acquired,and predict the structure and function of the protein utilizing methods of bioinformatics.Methods:fbpB and esxA gene were amplified from genome of MTB H37Rv by PCR.The fbpB-esxA fusing gene Iigated by(Gly<sub>4</sub>Ser)<sub>3</sub> linker was gained by means of Gene Splicing by Overlapping Extension PCU(SOEPCR), and fusing gene was cloned into expression vector pET-30a.The recombinant plasmid was sequenced and expressed in E.coli BL21(DE3).The protein was identified by Western blot using anti-HIS antibody.Secondary structure and antigenic epitopes of the protein were predicting using tools of bioinformatics.Results:The UNA sequences fbpB-esxA were identical with that published by GenBank.The Ag85B-ESAT-6 fusion protein about 50 kDa comprised 485 amino acids was efficiently produced from expression system in E.coli B1.21(DE3) under the induction of IPTG.Bioinformatics analysis showed the protein contained one transmembrane region and fourteen potential antigenic epitopes.Conclusions:The Ag85B-ESAT-6 fusion protein is successfully expressed with N-terminal HIS-tag.Gel filtration demonstrated that it exists as insoluble inclusion bodies mainly.The existence of linker doesn’t affect immunogenicity of Ag85B and ESAT-6.It will allow lor characterization in vitro and establish a foundation of further function research such as vaccine or diagnostic reagent.展开更多
Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is pres...Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.展开更多
Considering that almost all existing solutions of fusing different reconstructed results require experts’opinions and the issue of how to fuse probabilistic results and mixed results has not been discussed.Two soluti...Considering that almost all existing solutions of fusing different reconstructed results require experts’opinions and the issue of how to fuse probabilistic results and mixed results has not been discussed.Two solutions are proposed.The first is based on the Monte Carlo Method(FMCM),while the second is based on the Sub-Interval Technique(FSIT).The method based on FMCM generates sample points according to the distribution of each uncertain result firstly,and then gives out the cumulative distribution function of the final fused result by statistical analysis.The method based on FSIT gets the result fusion interval set according to lower and upper bounds of all interval results and a given length d of each sub-interval firstly,and then calculate the weighted matrix of the result fusion interval.As a result,the cumulative distribution function of the final fused result can also be given out by statistical analysis.Finally,three real accidents are given to demonstrate the methods of FMCM and FSIT,the results of which show that both work well in practice.展开更多
Satellite rainfall estimate can provide rainfall information over large areas,and raingauge can provide point-based ground observations with high accuracy.With the combination of satellite and raingauge data together,...Satellite rainfall estimate can provide rainfall information over large areas,and raingauge can provide point-based ground observations with high accuracy.With the combination of satellite and raingauge data together,the estimated rainfall fields are greatly improved.This combination method,called 'fusing technique',is discussed in this paper,and the validation for this technique is accomplished with HUBEX IOP data.展开更多
It is well known that deep learning depends on a large amount of clean data.Because of high annotation cost,various methods have been devoted to annotating the data automatically.However,a larger number of the noisy l...It is well known that deep learning depends on a large amount of clean data.Because of high annotation cost,various methods have been devoted to annotating the data automatically.However,a larger number of the noisy labels are generated in the datasets,which is a challenging problem.In this paper,we propose a new method for selecting training data accurately.Specifically,our approach fits a mixture model to the per-sample loss of the raw label and the predicted label,and the mixture model is utilized to dynamically divide the training set into a correctly labeled set,a correctly predicted set,and a wrong set.Then,a network is trained with these sets in the supervised learning manner.Due to the confirmation bias problem,we train the two networks alternately,and each network establishes the data division to teach the other network.When optimizing network parameters,the labels of the samples fuse respectively by the probabilities from the mixture model.Experiments on CIFAR-10,CIFAR-100 and Clothing1M demonstrate that this method is the same or superior to the state-of-the-art methods.展开更多
The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conv...The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conventional broadband energy integration method. The required spectrum level is theoretically discussed when the detection performance of the known line detection is better than that of broadband energy integration method. Under the condition of the target can be detected in line spectrum band, the relationship between the line spectrum level and signal to noise ratio (SNR) is also discussed. This paper proposes a line spectrum target detection method that a matrix using DC jump to fluctuations ratios of sub-band spatial spectrum and beam space output is constructed. This matrix acts as a filter that the line spectrum target with certain frequency and azimuth is passed at most. By fusing with the other sub band results, the conventional detection performance can be improved. At the same time, the applicable condition and detection performance are analyzed in the paper. The simulation and the sea trial data processing results show that the algorithm can effectively extract weak goal line spectrum target under the condition of multi-interference. The algorithm doesn't need multi-frame statistics and the detection performance is closer to the optimal line spectrum method.展开更多
Mutations in presenilin 1(PS1)gene are closely associated with the early onset of familial Alzheimer’s disease(EOFAD).The fusion genes,GFP-PS1(recombinant plasmid pEGFP-C1-PS1)and PS1-GFP(recombinant plasmid pEGFP-N2...Mutations in presenilin 1(PS1)gene are closely associated with the early onset of familial Alzheimer’s disease(EOFAD).The fusion genes,GFP-PS1(recombinant plasmid pEGFP-C1-PS1)and PS1-GFP(recombinant plasmid pEGFP-N2-PS1)were constructed to study the subcellular localization of PS1 holoprotein.Recombinant plasmids were transiently transfected into two cell lines,HEK293 and CHO,respectively,using the green fluorescence from GFP(green fluorescence protein)as the PS1 localization signal.Then,we observed green fluorescence with a SPOT II(Olympus,BH2)and CONFOCAL microscope(Olympus,FV300)under 488 nm.The results show that PS1 located on the nuclear envelope.A few can be found on the cellular membrane and in the cytosol in a non-homogeneous distribution.展开更多
The use of additive manufacturing techniques in the development of unconventional materials can help reduce the environmental impact of traditional construction materials.In this paper,the properties of a 3D-printed b...The use of additive manufacturing techniques in the development of unconventional materials can help reduce the environmental impact of traditional construction materials.In this paper,the properties of a 3D-printed biocomposite were evaluated.Biofilaments obtained by mixing pulverized bamboo fibers with polylactic acid(PLA)resin were extruded during the manufacturing process.To assess the effect of incorporating plant fibers,an analysis was conducted on the morphology,elemental chemical composition,crystallinity index,principal functional groups,thermal stability,surface roughness,microhardness,density,tensile strength,elastic modulus,and strain percentage of reinforced samples.The results were comparedwith those obtained from the characterization of standard PLAfilaments(unreinforced).The fused deposition modeling(FDM)technique was employed to print biocomposite specimens.Additionally,the influence of the printing parameters(infill density,build orientation,and layer thickness)on the physical,tribological,andmechanical properties of the biocomposites was analyzed.These results were compared with those obtained for specimens printed with pure PLA.The findings indicate that incorporating 10%vegetable filler into PLA filaments enhanced the strength and stiffness of the biocomposite under axial loads.Finally,the strength of the biocomposite subjected to axial loads was compared with the standardized values for wood-plastic composites,demonstrating the feasibility of its use for non-structural purposes in civil construction.展开更多
Fused silica(SiO_(2)glass),a key amorphous component of Earth’s silicate minerals,undergoes coordination and phase transformations under high pressure.Although extensive studies have been conducted,discrepancies betw...Fused silica(SiO_(2)glass),a key amorphous component of Earth’s silicate minerals,undergoes coordination and phase transformations under high pressure.Although extensive studies have been conducted,discrepancies between theoretical and experimental studies remain,particularly regarding strain rate effects during compression.Here,we examine strain rate influences on the shock-induced amorphous–amorphous phase transitions in fused silica by measuring its Hugoniot equation of state and longitudinal sound velocity(CL)up to 7 GPa at strain rates of 10^(6)–10^(7)s^(-1)using a one-stage light-gas gun.A discontinuity in the relationship between shock velocity(US)and particle velocity(UP)and a significant softening in C_(L)of fused silica were observed near~5 GPa under shock loading.Our results indicate that high strain rates restrict Si–O–Si rotation in fused silica,modifying their bonds and increasing silicon coordination.The transition pressure by shock compression is significantly higher than that under static high-pressure conditions(2–3 GPa),which agrees with some recent theoretical predictions with high compression rates,reflecting the greater pressure needed to overcome energy barriers with the strain rate increase.These findings offer insights into strain rate-dependent phase transitions in fused silica and other silicate minerals(e.g.,quartz,olivine,and forsterite),bridging gaps between theoretical simulations and experiments.展开更多
Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring...Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM.展开更多
Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear ...Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests.展开更多
Wear is a prevalent issue across various industries. Spherical fused tungsten carbide (sFTC) reinforced nickel-aluminum bronze (NAB) matrix composite surface deposits have shown remarkable potential in mitigating wear...Wear is a prevalent issue across various industries. Spherical fused tungsten carbide (sFTC) reinforced nickel-aluminum bronze (NAB) matrix composite surface deposits have shown remarkable potential in mitigating wear by approximately 80%. However, the performance of these sFTC/NAB composite surface deposits is determined by their residual stress state, and the precise macroscopic and microscopic residual stresses within these composites have yet to be clearly established. To address this gap, we employed neutron diffraction to measure the residual stresses in the sFTC/NAB composite surface deposits and re-melted NAB samples produced via laser melt injection. Significant residual stresses were determined. The maximum tensile macro residual stress appears approximately 1-1.5 mm below the composite layer. Residual stresses accumulate with an increasing number of laser process tracks. The maximum tensile macro residual stress in the three-track samples reaches about 350 MPa. Preheating the base plate significantly reduces the levels of macroscopic residual stress. The WC phase displayed significant compressive thermal misfit residual stress magnitude, while the Cu matrix exhibited tensile thermal misfit residual stress. Preheating the base plate does not reduce microscopic thermal misfit residual stress levels. In addition, a finite element model was built to investigate temperature and residual stresses in the re-melted NAB samples. The predicted temperature history and residual stress agree with the experimental results.展开更多
Acrylonitrile–butadiene–styrene(ABS)is the main material used in fused deposition modeling(FDM),which has good toughness and strength,but the single ABS material has poor heat resistance,which tends to cause warping...Acrylonitrile–butadiene–styrene(ABS)is the main material used in fused deposition modeling(FDM),which has good toughness and strength,but the single ABS material has poor heat resistance,which tends to cause warping and deformation during the printing process.Polycarbonate(PC)exhibits good performance in heat resistance,allowing it to maintain stable performance at higher temperatures.In this work,PC was used as a blending modifier to prepare five kinds of ABS/PC composite filaments,and the mechanical and thermal properties of the ABS/PC(Acrylonitrile-butadiene-styrene/Polycarbonate)composite filaments were studied and analyzed.Results showed that the glass transition temperature(Tg)of the blend increased continuously as the PC content increased.When the mass fraction of ABS/PC was 50/50,the glass transition temperature of the blend increased by 21.21%,and the tensile strength of the composites reached 40.23 MPa,which was an increase of 36.47% compared with that of pure ABS.However,the impact strength of the composites decreased with the addition of PC.Moreover,with the increase in the mass fraction of PC,the printing accuracy error increased from 0.02 to 0.18 mm.The results of this paper will promote the improvement of ABS printing performance and enrich the available materials for FDM.展开更多
Synthesis technology and properties of cordierite from solid waste resources/Tan Qitong,Zhao Huizhong,Yu Jun,Zhang Han,Tan Liqiang//Naihuo Cailiao.-2024,58(3):185 Abstract:To effectively utilize solid waste resources ...Synthesis technology and properties of cordierite from solid waste resources/Tan Qitong,Zhao Huizhong,Yu Jun,Zhang Han,Tan Liqiang//Naihuo Cailiao.-2024,58(3):185 Abstract:To effectively utilize solid waste resources and relieve resource constraints,cordierite refractory raw materials were prepared according to the chemical composition of cordierite,using 12 mass%fused magnesia dust powder,40 mass%fused corundum dust powder and 48 mass%quartz tailings as starting materials.展开更多
Fluorinated fused azobenzene boron(FBAz)is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells(all-PSC).The B←N bridging units impart a fixed configuration and low-lyin...Fluorinated fused azobenzene boron(FBAz)is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells(all-PSC).The B←N bridging units impart a fixed configuration and low-lying LUMO/HOMO energy.Three polymer acceptor materials(P2f,P3f and P5f)with different fluorine substitution positions by copolymerizing FBAz with indacenodithiophene(IDT),are synthesized and investigated to study the influence of fluorinated forms on the all-polymer solar cell performance.The FBAz units are synthesized in just three steps,facilitating the straightforward production of polymer acceptors P2f,P3f,and P5f.These acceptors exhibit strong light absorption in the visible to near-infrared range of 500-1000nm and possess suitable LUMO/HOMO energy levels of-3.99/-5.66 eV which are very complementary to that(E_(LUMO/HOMO)=-3.59/-5.20 eV)of the widely-used polymer donor poly[(ethylhexylthiophenyl)-benzodithiophene-(ethylhexyl)-thienothiophene](PTB7-Th).All-polymer solar cells(all-PSCs)with PTB7-Th as electron donor and P3f as electron acceptor exhibits highest power conversion efficiencies(PCE)2.70%.When PC_(61)BM is added as the third component,the device efficiency can reach 5.36%.These preliminary results indicate that FBAz is a promising strong electron acceptor for the development of n-type polymer semiconductors,especially in organic photovoltaics(OPVs).To the best of our knowledge,this is the first example demonstrating the unique photovoltaic properties of the N=N double bond as an acceptor material.展开更多
The bioinert nature of polyether ether ketone(PEEK)material limits the widespread clinical application of PEEK implants.Although the porous structure is considered to improve osseointegration of PEEK implants,it is ha...The bioinert nature of polyether ether ketone(PEEK)material limits the widespread clinical application of PEEK implants.Although the porous structure is considered to improve osseointegration of PEEK implants,it is hardly used due to its mechanical properties.This study investigated the combined influence of the porous structure and in vivo mechanical stimulation on implantation safety and bone growth based on finite element analysis of the biomechanical behavior of the implantation system.The combined control of pore size and screw preloads allows the porous PEEK implant to achieve good osseointegration while maintaining a relatively high safety level.A pore size of 600μm and a preload of 0.05 N·m are the optimal combination for the long-term stability of the implant,with which the safety factor of the implant is>2,and the predicted percentage of effective bone growth area of the bone-implant interface reaches 97%.For further clinical application,PEEK implants were fabricated with fused filament fabrication(FFF)three-dimensional(3D)printing,and clinical outcomes demonstrated better bone repair efficacy and long-term stability of porous PEEK implants compared to solid PEEK implants.Moreover,good osteointegration performance of 3D-printed porous PEEK implants was observed,with an average bone volume fraction>40%three months after implantation.In conclusion,3D-printed porous PEEK implants have great potential for clinical application,with validated implantation safety and good osseointegration.展开更多
We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination unif...We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination uniformity in inertial confinement fusion(ICF)laser systems.The fundamental operating mechanism and key fabrication techniques for the SRPCP are systematically developed and experimentally validated.The SRPCP converts a linearly polarized 3ω incident laser beam into an output beam with a spatially randomized polarization distribution.When combined with a continuous phase plate,the SRPCP effectively suppresses high-intensity speckles at all spatial frequencies in the focal spot.The proposed PS technique is specifically designed for high-fluence large-aperture laser systems,enabling novel polarization control regimes in laser-driven ICF.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.51575022 and 51475021)
文摘Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.
基金Project(60835005) supported by the National Nature Science Foundation of China
文摘High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.
基金Supported by Research Program of The Health Department of Hainan Province(No.2007-44)Research Cultivation Program of Hainan Medical University(HY2010-006)+1 种基金Research Program in higher educational institutes of The Education Department of Hainan Province(No.Hj2010-21)Natural Science Fund of Hainan Province(No.2008~30837)
文摘Objective:To obtain fbpB-esxA fusing gene of Mycobacterium tuberculosis(MTU),express the encoded fusing protein in Escherichia coli(E.coli),identify protein acquired,and predict the structure and function of the protein utilizing methods of bioinformatics.Methods:fbpB and esxA gene were amplified from genome of MTB H37Rv by PCR.The fbpB-esxA fusing gene Iigated by(Gly<sub>4</sub>Ser)<sub>3</sub> linker was gained by means of Gene Splicing by Overlapping Extension PCU(SOEPCR), and fusing gene was cloned into expression vector pET-30a.The recombinant plasmid was sequenced and expressed in E.coli BL21(DE3).The protein was identified by Western blot using anti-HIS antibody.Secondary structure and antigenic epitopes of the protein were predicting using tools of bioinformatics.Results:The UNA sequences fbpB-esxA were identical with that published by GenBank.The Ag85B-ESAT-6 fusion protein about 50 kDa comprised 485 amino acids was efficiently produced from expression system in E.coli B1.21(DE3) under the induction of IPTG.Bioinformatics analysis showed the protein contained one transmembrane region and fourteen potential antigenic epitopes.Conclusions:The Ag85B-ESAT-6 fusion protein is successfully expressed with N-terminal HIS-tag.Gel filtration demonstrated that it exists as insoluble inclusion bodies mainly.The existence of linker doesn’t affect immunogenicity of Ag85B and ESAT-6.It will allow lor characterization in vitro and establish a foundation of further function research such as vaccine or diagnostic reagent.
文摘Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.
基金supported by the National Natural Science Foundation of China[grant number 51775056]the Natural Science Foundation of Hunan Province[grant number 2018JJ3544]the Hunan Provincial Innovation Foundation for Postgraduate[grant number CX2018B550].
文摘Considering that almost all existing solutions of fusing different reconstructed results require experts’opinions and the issue of how to fuse probabilistic results and mixed results has not been discussed.Two solutions are proposed.The first is based on the Monte Carlo Method(FMCM),while the second is based on the Sub-Interval Technique(FSIT).The method based on FMCM generates sample points according to the distribution of each uncertain result firstly,and then gives out the cumulative distribution function of the final fused result by statistical analysis.The method based on FSIT gets the result fusion interval set according to lower and upper bounds of all interval results and a given length d of each sub-interval firstly,and then calculate the weighted matrix of the result fusion interval.As a result,the cumulative distribution function of the final fused result can also be given out by statistical analysis.Finally,three real accidents are given to demonstrate the methods of FMCM and FSIT,the results of which show that both work well in practice.
基金supported by National Basic Research Projects (No.2000048703 and 2001CB309402)
文摘Satellite rainfall estimate can provide rainfall information over large areas,and raingauge can provide point-based ground observations with high accuracy.With the combination of satellite and raingauge data together,the estimated rainfall fields are greatly improved.This combination method,called 'fusing technique',is discussed in this paper,and the validation for this technique is accomplished with HUBEX IOP data.
基金supported by SRC-Open Project of Research Center of Security Video and Image Processing Engineering Technology of Guizhou ([2020]001)Beijing Advanced Innovation Center for Intelligent Robots and Systems (2018IRS20)National Natural Science Foundation of China (Grant No.61973334).
文摘It is well known that deep learning depends on a large amount of clean data.Because of high annotation cost,various methods have been devoted to annotating the data automatically.However,a larger number of the noisy labels are generated in the datasets,which is a challenging problem.In this paper,we propose a new method for selecting training data accurately.Specifically,our approach fits a mixture model to the per-sample loss of the raw label and the predicted label,and the mixture model is utilized to dynamically divide the training set into a correctly labeled set,a correctly predicted set,and a wrong set.Then,a network is trained with these sets in the supervised learning manner.Due to the confirmation bias problem,we train the two networks alternately,and each network establishes the data division to teach the other network.When optimizing network parameters,the labels of the samples fuse respectively by the probabilities from the mixture model.Experiments on CIFAR-10,CIFAR-100 and Clothing1M demonstrate that this method is the same or superior to the state-of-the-art methods.
文摘The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conventional broadband energy integration method. The required spectrum level is theoretically discussed when the detection performance of the known line detection is better than that of broadband energy integration method. Under the condition of the target can be detected in line spectrum band, the relationship between the line spectrum level and signal to noise ratio (SNR) is also discussed. This paper proposes a line spectrum target detection method that a matrix using DC jump to fluctuations ratios of sub-band spatial spectrum and beam space output is constructed. This matrix acts as a filter that the line spectrum target with certain frequency and azimuth is passed at most. By fusing with the other sub band results, the conventional detection performance can be improved. At the same time, the applicable condition and detection performance are analyzed in the paper. The simulation and the sea trial data processing results show that the algorithm can effectively extract weak goal line spectrum target under the condition of multi-interference. The algorithm doesn't need multi-frame statistics and the detection performance is closer to the optimal line spectrum method.
文摘Mutations in presenilin 1(PS1)gene are closely associated with the early onset of familial Alzheimer’s disease(EOFAD).The fusion genes,GFP-PS1(recombinant plasmid pEGFP-C1-PS1)and PS1-GFP(recombinant plasmid pEGFP-N2-PS1)were constructed to study the subcellular localization of PS1 holoprotein.Recombinant plasmids were transiently transfected into two cell lines,HEK293 and CHO,respectively,using the green fluorescence from GFP(green fluorescence protein)as the PS1 localization signal.Then,we observed green fluorescence with a SPOT II(Olympus,BH2)and CONFOCAL microscope(Olympus,FV300)under 488 nm.The results show that PS1 located on the nuclear envelope.A few can be found on the cellular membrane and in the cytosol in a non-homogeneous distribution.
基金a derivative product of the project INV-ING-3788 financed by the Vicerectory of Research of the Universidad Militar Nueva Granada,validity 2023.
文摘The use of additive manufacturing techniques in the development of unconventional materials can help reduce the environmental impact of traditional construction materials.In this paper,the properties of a 3D-printed biocomposite were evaluated.Biofilaments obtained by mixing pulverized bamboo fibers with polylactic acid(PLA)resin were extruded during the manufacturing process.To assess the effect of incorporating plant fibers,an analysis was conducted on the morphology,elemental chemical composition,crystallinity index,principal functional groups,thermal stability,surface roughness,microhardness,density,tensile strength,elastic modulus,and strain percentage of reinforced samples.The results were comparedwith those obtained from the characterization of standard PLAfilaments(unreinforced).The fused deposition modeling(FDM)technique was employed to print biocomposite specimens.Additionally,the influence of the printing parameters(infill density,build orientation,and layer thickness)on the physical,tribological,andmechanical properties of the biocomposites was analyzed.These results were compared with those obtained for specimens printed with pure PLA.The findings indicate that incorporating 10%vegetable filler into PLA filaments enhanced the strength and stiffness of the biocomposite under axial loads.Finally,the strength of the biocomposite subjected to axial loads was compared with the standardized values for wood-plastic composites,demonstrating the feasibility of its use for non-structural purposes in civil construction.
基金supported by the National Natural Science Foundation of China(Grant Nos.42422201,12175211,and 12350710177)the Sichuan Science and Technology Program(Grant No.2023NSFSC1910).
文摘Fused silica(SiO_(2)glass),a key amorphous component of Earth’s silicate minerals,undergoes coordination and phase transformations under high pressure.Although extensive studies have been conducted,discrepancies between theoretical and experimental studies remain,particularly regarding strain rate effects during compression.Here,we examine strain rate influences on the shock-induced amorphous–amorphous phase transitions in fused silica by measuring its Hugoniot equation of state and longitudinal sound velocity(CL)up to 7 GPa at strain rates of 10^(6)–10^(7)s^(-1)using a one-stage light-gas gun.A discontinuity in the relationship between shock velocity(US)and particle velocity(UP)and a significant softening in C_(L)of fused silica were observed near~5 GPa under shock loading.Our results indicate that high strain rates restrict Si–O–Si rotation in fused silica,modifying their bonds and increasing silicon coordination.The transition pressure by shock compression is significantly higher than that under static high-pressure conditions(2–3 GPa),which agrees with some recent theoretical predictions with high compression rates,reflecting the greater pressure needed to overcome energy barriers with the strain rate increase.These findings offer insights into strain rate-dependent phase transitions in fused silica and other silicate minerals(e.g.,quartz,olivine,and forsterite),bridging gaps between theoretical simulations and experiments.
基金supporteded by Natural Science Foundation of Shanghai(Grant No.22ZR1463900)State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202318)the Fundamental Research Funds for the Central Universities(Grant No.22120220649).
文摘Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM.
基金Project(U2268213) supported by the National Natural Science Foundation of ChinaProject(2024YFHZ0121) supported by the Sichuan Science and Technology Program,China。
文摘Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests.
文摘Wear is a prevalent issue across various industries. Spherical fused tungsten carbide (sFTC) reinforced nickel-aluminum bronze (NAB) matrix composite surface deposits have shown remarkable potential in mitigating wear by approximately 80%. However, the performance of these sFTC/NAB composite surface deposits is determined by their residual stress state, and the precise macroscopic and microscopic residual stresses within these composites have yet to be clearly established. To address this gap, we employed neutron diffraction to measure the residual stresses in the sFTC/NAB composite surface deposits and re-melted NAB samples produced via laser melt injection. Significant residual stresses were determined. The maximum tensile macro residual stress appears approximately 1-1.5 mm below the composite layer. Residual stresses accumulate with an increasing number of laser process tracks. The maximum tensile macro residual stress in the three-track samples reaches about 350 MPa. Preheating the base plate significantly reduces the levels of macroscopic residual stress. The WC phase displayed significant compressive thermal misfit residual stress magnitude, while the Cu matrix exhibited tensile thermal misfit residual stress. Preheating the base plate does not reduce microscopic thermal misfit residual stress levels. In addition, a finite element model was built to investigate temperature and residual stresses in the re-melted NAB samples. The predicted temperature history and residual stress agree with the experimental results.
基金the Natural Science Foundation of Shandong Province(grant no.ZR2020KF024)Yantai City Science and Technology Plan Project(grant no.2022ZDCX016)+1 种基金the University Research Project of Shandong Province(grant no.J17KB007)Natural Science Foundation of Shandong Jiaotong University(grant no.Z201937).
文摘Acrylonitrile–butadiene–styrene(ABS)is the main material used in fused deposition modeling(FDM),which has good toughness and strength,but the single ABS material has poor heat resistance,which tends to cause warping and deformation during the printing process.Polycarbonate(PC)exhibits good performance in heat resistance,allowing it to maintain stable performance at higher temperatures.In this work,PC was used as a blending modifier to prepare five kinds of ABS/PC composite filaments,and the mechanical and thermal properties of the ABS/PC(Acrylonitrile-butadiene-styrene/Polycarbonate)composite filaments were studied and analyzed.Results showed that the glass transition temperature(Tg)of the blend increased continuously as the PC content increased.When the mass fraction of ABS/PC was 50/50,the glass transition temperature of the blend increased by 21.21%,and the tensile strength of the composites reached 40.23 MPa,which was an increase of 36.47% compared with that of pure ABS.However,the impact strength of the composites decreased with the addition of PC.Moreover,with the increase in the mass fraction of PC,the printing accuracy error increased from 0.02 to 0.18 mm.The results of this paper will promote the improvement of ABS printing performance and enrich the available materials for FDM.
文摘Synthesis technology and properties of cordierite from solid waste resources/Tan Qitong,Zhao Huizhong,Yu Jun,Zhang Han,Tan Liqiang//Naihuo Cailiao.-2024,58(3):185 Abstract:To effectively utilize solid waste resources and relieve resource constraints,cordierite refractory raw materials were prepared according to the chemical composition of cordierite,using 12 mass%fused magnesia dust powder,40 mass%fused corundum dust powder and 48 mass%quartz tailings as starting materials.
基金supported by the National Natural Science Foundation of China(No.22375123)the Shuguang Program of Shanghai Education Development Foundation,the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SXTD012)。
文摘Fluorinated fused azobenzene boron(FBAz)is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells(all-PSC).The B←N bridging units impart a fixed configuration and low-lying LUMO/HOMO energy.Three polymer acceptor materials(P2f,P3f and P5f)with different fluorine substitution positions by copolymerizing FBAz with indacenodithiophene(IDT),are synthesized and investigated to study the influence of fluorinated forms on the all-polymer solar cell performance.The FBAz units are synthesized in just three steps,facilitating the straightforward production of polymer acceptors P2f,P3f,and P5f.These acceptors exhibit strong light absorption in the visible to near-infrared range of 500-1000nm and possess suitable LUMO/HOMO energy levels of-3.99/-5.66 eV which are very complementary to that(E_(LUMO/HOMO)=-3.59/-5.20 eV)of the widely-used polymer donor poly[(ethylhexylthiophenyl)-benzodithiophene-(ethylhexyl)-thienothiophene](PTB7-Th).All-polymer solar cells(all-PSCs)with PTB7-Th as electron donor and P3f as electron acceptor exhibits highest power conversion efficiencies(PCE)2.70%.When PC_(61)BM is added as the third component,the device efficiency can reach 5.36%.These preliminary results indicate that FBAz is a promising strong electron acceptor for the development of n-type polymer semiconductors,especially in organic photovoltaics(OPVs).To the best of our knowledge,this is the first example demonstrating the unique photovoltaic properties of the N=N double bond as an acceptor material.
基金supported by the National Key R&D Program of China(No.2023YFB4603500)the Program for Innovation Team of Shaanxi Province(No.2023-CX-TD-17)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Shaanxi Province Qinchuangyuan“Scientist+Engineer”Team Construction Project(No.2022KXJ-106).
文摘The bioinert nature of polyether ether ketone(PEEK)material limits the widespread clinical application of PEEK implants.Although the porous structure is considered to improve osseointegration of PEEK implants,it is hardly used due to its mechanical properties.This study investigated the combined influence of the porous structure and in vivo mechanical stimulation on implantation safety and bone growth based on finite element analysis of the biomechanical behavior of the implantation system.The combined control of pore size and screw preloads allows the porous PEEK implant to achieve good osseointegration while maintaining a relatively high safety level.A pore size of 600μm and a preload of 0.05 N·m are the optimal combination for the long-term stability of the implant,with which the safety factor of the implant is>2,and the predicted percentage of effective bone growth area of the bone-implant interface reaches 97%.For further clinical application,PEEK implants were fabricated with fused filament fabrication(FFF)three-dimensional(3D)printing,and clinical outcomes demonstrated better bone repair efficacy and long-term stability of porous PEEK implants compared to solid PEEK implants.Moreover,good osteointegration performance of 3D-printed porous PEEK implants was observed,with an average bone volume fraction>40%three months after implantation.In conclusion,3D-printed porous PEEK implants have great potential for clinical application,with validated implantation safety and good osseointegration.
基金supported by the National Natural Science Foundation of China(Grant No.62275235).
文摘We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination uniformity in inertial confinement fusion(ICF)laser systems.The fundamental operating mechanism and key fabrication techniques for the SRPCP are systematically developed and experimentally validated.The SRPCP converts a linearly polarized 3ω incident laser beam into an output beam with a spatially randomized polarization distribution.When combined with a continuous phase plate,the SRPCP effectively suppresses high-intensity speckles at all spatial frequencies in the focal spot.The proposed PS technique is specifically designed for high-fluence large-aperture laser systems,enabling novel polarization control regimes in laser-driven ICF.