期刊文献+
共找到25,539篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient synthesis of hydroxyl functioned polyesters from natural polyols and sebacic acid 被引量:5
1
作者 Zhuo Yuan Ning Qing Shan Zhang Qin Pei Wu Yun Zheng Li Dong Xia Ma Jia Zhe Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2011年第6期635-638,共4页
Amphiphilic hydroxyl functioned polyester(HFP) can be used as compatibilizers for blends of starch and resins.We developed a synthetic method for effective preparation of HFPs.Water was removed by high flow rate N_2... Amphiphilic hydroxyl functioned polyester(HFP) can be used as compatibilizers for blends of starch and resins.We developed a synthetic method for effective preparation of HFPs.Water was removed by high flow rate N_2 rather than high vacuum during polycondensation of sebacic acid with xylitol,sorbitol,or mannitol in the presence of dehydrative condensation catalyst and the product is with[η]of 27.2 mL/g,M_n of 1903,M_w of 167,693,T_g of -30.5℃,T_m of 44.0℃.Weight loss is 1.73%under 200℃. The integral distributions of molecular weight are 43.6 wt%and 63.8 wt%over 10,000 and 3000,respectively.The results indicated that higher molecular weight HFP was economically synthesized. 展开更多
关键词 Hydroxyl functioned polyester Poly(sorbitol sebacate) Dehydrative condensation catalyst Biodegradable plastics
原文传递
Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury 被引量:2
2
作者 Fanzhuo Zeng Yuxin Li +6 位作者 Xiaoyu Li Xinyang Gu Yue Cao Shuai Cheng He Tian Rongcheng Mei Xifan Mei 《Neural Regeneration Research》 2026年第1期365-376,共12页
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s... Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury. 展开更多
关键词 ANGIOGENESIS apoptosis brain-derived neurotrophic factor colony stimulating factor 1 receptor inflammation MICROGLIA motor function spinal cord injury vascular endothelial growth factor
暂未订购
The Analysis of Gauss Radial Basis Functions and Its Application in Locating Olivine on the Moon
3
作者 SONG Shicang SONG Xiaoyuan SONG Shuhan 《应用数学》 北大核心 2026年第1期173-181,共9页
Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the m... Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme. 展开更多
关键词 Gauss function Radial basis function Machine learning Lunar olivine locating Data fitting
在线阅读 下载PDF
Early intelligent active assistance in walking for hemiplegic patients under suspension protection: a randomized controlled trial
4
作者 Ma Shanxin Zheng Jianling +5 位作者 Cheng Jian Lin Xi Li Qiuyuan Wang Li Zeng Yangkang Song Luping 《中国组织工程研究》 北大核心 2026年第12期3075-3082,共8页
BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking rec... BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function. 展开更多
关键词 hemiplegia stroke suspension protection system personal assistant machine intelligent walking aid early rehabilitation active training walking function NEUROPLASTICITY gait analysis motor function recovery rehabilitation training balance ability
暂未订购
Theoretical insights into the hydrogen peroxide oxidation and reduction reactions on low-index Pt surfaces
5
作者 WANG Qi CHEN Lifang +1 位作者 DING Ruimin YIN Xi 《燃料化学学报(中英文)》 北大核心 2026年第1期35-45,共11页
Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for ca... Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for catalyst design and performance improvement in these applications.In this work,we systematically investigate the HPOR/HPRR mechanisms on low-index Pt surfaces,specifically Pt(111),Pt(100)and Pt(110),through density functional theory(DFT)calculations combined with the computational hydrogen electrode(CHE)model.For HPOR,all the low-index Pt surfaces exhibit a unified potential-determining step(PDS)involving the electrochemical oxidation of hydroperoxyl intermediates(HOO*).The binding free energy of HOO*(Δ_(GHOO*))emerges as an activity descriptor,with Pt(110)exhibiting the highest HPOR activity.The HPRR mechanism follows a chem-electrochemical(C-EC)pathway.The rate-determining step(RDS)of HPRR is either the cleavage of the HO-OH bond(chemical)or the reduction of HO(electrochemical),depending on their respective activation energies.These activation energies are functions of the HO*binding free energy,Δ_(GHO*),establishingΔ_(GHO*)as the descriptor for HPRR activity prediction.Pt(111)and Pt(100)are identified as the most active HPRR catalysts among the studied metal surfaces,although they still experience a significant overpotential.The scaling relationship betweenΔ_(GHOO*)andΔ_(GHO*)reveals a thermodynamic coupling of HPOR and HPRR,explaining their occurrence on Pt surfaces.These findings provide important insights and activity descriptors for both HPOR and HPRR,providing valuable guidance for the design of electrocatalysts in H_(2)O_(2)-related energy applications and fuel cells. 展开更多
关键词 HPOR HPRR Pt low-index surfaces density functional theory
在线阅读 下载PDF
Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity
6
作者 ZHENG Haifeng GUO Xingzhe +5 位作者 WEI Yunwei WANG Xinfang QI Huimin YAN Yuting ZHANG Jie LI Bingwen 《无机化学学报》 北大核心 2026年第1期193-202,共10页
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul... The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276. 展开更多
关键词 PYRENE metal-organic frameworks composite catalyst oxygen evolution reaction density functional theory
在线阅读 下载PDF
Are emerging electroconductive biomaterials for spinal cord injury repair the future?
7
作者 Aleksandra Serafin Maurice N.Collins 《Neural Regeneration Research》 2026年第3期1140-1141,共2页
Spinal cord injury(SCI)is a debilitating ailment that leads to the loss of motor and sensory functions,often leaving the patient paralyzed below the injury site(Chen et al.,2013).Globally around 250,000-300,000 people... Spinal cord injury(SCI)is a debilitating ailment that leads to the loss of motor and sensory functions,often leaving the patient paralyzed below the injury site(Chen et al.,2013).Globally around 250,000-300,000 people are diagnosed with SCI annually(Singh et al.,2014),and while this number appears quite low,the effect that an SCI has on the patient’s quality of life is drastic,due to the current difficulties to comprehensively treat this illness.The cost of patient care can also be quite costly,amounting to an estimated$1.69 billion in healthcare costs in the USA alone(Mahabaleshwarkar and Khanna,2014). 展开更多
关键词 spinal cord injury PARALYSIS electroconductive biomaterials healthcare costs sensory functions motor functions repair spinal cord injury sci
暂未订购
Artificial intelligence in functional gastrointestinal disorders:From precision diagnosis to preventive healthcare
8
作者 Yi-Nan Yan Jing-Qi Zeng Xia Ding 《Artificial Intelligence in Gastroenterology》 2026年第1期20-35,共16页
Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to s... Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to symptom heterogeneity and the absence of reliable biomarkers.Artificial intelligence(AI)enables the integration of multimodal data to enhance FGID management through precision diagnostics and preventive healthcare.This minireview summarizes recent advancements in AI applications for FGIDs,highlighting progress in diagnostic accuracy,subtype classification,personalized interventions,and preventive strategies inspired by the traditional Chinese medicine concept of“treating the undiseased”.Machine learning and deep learning algorithms have demonstrated value in improving IBS diagnosis,refining FD neuro-gastrointestinal subtyping,and screening for GERD-related complications.Moreover,AI supports dietary,psychological,and integrative medicine-based interventions to improve patient adherence and quality of life.Nonetheless,key challenges remain,including data heterogeneity,limited model interpretability,and the need for robust clinical validation.Future directions emphasize interdisciplinary collaboration,the development of multimodal and explainable AI models,and the creation of patientcentered platforms to facilitate a shift from reactive treatment to proactive prevention.This review provides a systematic framework to guide the clinical application and theoretical innovation of AI in FGIDs. 展开更多
关键词 Artificial intelligence Functional gastrointestinal disorders Irritable bowel syndrome Functional dyspepsia Gastroesophageal reflux disease
在线阅读 下载PDF
Extra-pineal melatonin in perisynaptic Schwann cell–muscle fiber cross talk at the regenerating neuromuscular junction
9
作者 Samuele Negro Cesare Montecucco Michela Rigoni 《Neural Regeneration Research》 2026年第1期300-301,共2页
The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore functio... The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014). 展开更多
关键词 FUNCTION SYSTEM COORDINATED
在线阅读 下载PDF
Pericyte-glial cell interactions: Insights into brain health and disease
10
作者 Ali Sepehrinezhad Ali Gorji 《Neural Regeneration Research》 2026年第4期1253-1263,共11页
Pericytes are multi-functional mural cells of the central nervous system that cover the capillary endothelial cells. Pericytes play a vital role in nervous system development, significantly influencing the formation, ... Pericytes are multi-functional mural cells of the central nervous system that cover the capillary endothelial cells. Pericytes play a vital role in nervous system development, significantly influencing the formation, maturation, and maintenance of the central nervous system. An expanding body of studies has revealed that pericytes establish carefully regulated interactions with oligodendrocytes, microglia, and astrocytes. These communications govern numerous critical brain processes, including angiogenesis, neurovascular unit homeostasis, blood–brain barrier integrity, cerebral blood flow regulation, and immune response initiation. Glial cells and pericytes participate in dynamic and reciprocal interactions, with each influencing and adjusting the functionality of the other. Pericytes have the ability to control astrocyte polarization, trigger differentiation of oligodendrocyte precursor cells, and initiate immunological responses in microglia. Various neurological disorders that compromise the integrity of the blood–brain barrier can disrupt these communications, impair waste clearance, and hinder cerebral blood circulation, contributing to neuroinflammation. In the context of neurodegeneration, these disruptions exacerbate pathological processes, such as neuronal damage, synaptic dysfunction, and impaired tissue repair. This article explores the complex interactions between pericytes and various glial cells in both healthy and pathological states of the central nervous system. It highlights their essential roles in neurovascular function and disease progression, providing important insights that may enhance our understanding of the molecular mechanisms underlying these interactions and guide potential therapeutic strategies for neurodegenerative disorders in future research. 展开更多
关键词 BRAIN INFLAMMATION NEUROPROTECTION neurovascular function therapeutic targets
暂未订购
Protective effect of Guanxinning on antipsychotic-induced cardiac impairment in long-term hospitalized psychiatric patients
11
作者 Fu-Gang Luo Hao-Yu Xing +4 位作者 Jun-Jie Wang Wen-Ye Wu Kai-Jie Fang Hai-Dong Song Juan Yan 《World Journal of Psychiatry》 2026年第1期221-232,共12页
BACKGROUND Long-term antipsychotic therapy in psychiatric patients carries significant cardiovascular risks,including QT interval prolongation,myocardial injury,and functional impairment.Guanxinning,a traditional Chin... BACKGROUND Long-term antipsychotic therapy in psychiatric patients carries significant cardiovascular risks,including QT interval prolongation,myocardial injury,and functional impairment.Guanxinning,a traditional Chinese medicine formulation,has demonstrated cardioprotective potential in preclinical studies,but clinical evidence in this population remains limited.AIM To evaluate the cardioprotective effects of Guanxinning against antipsychotic-induced cardiac injury in long-term hospitalized psychiatric patients.METHODS A randomized,double-blind,placebo-controlled trial was conducted with 120 psychiatric inpatients receiving chronic antipsychotic therapy.Participants were allocated to:Intervention group:Conventional antipsychotics+Guanxinning tablets(0.38 g×4 tablets,ter in die);Control group:Conventional antipsychotics+identical placebo;Cardiac assessments at baseline and 12 months included:Electrocardiography(corrected QT interval),echocardiography(left ventricular ejection fraction,left ventricular end-diastolic diameter),serum biomarkers(cardiac troponin I,B-type natriuretic peptide,superoxide dismutase,malondialdehyde,high-sensitivity C-reactive protein).RESULTS Compared to controls,the Guanxinning group showed:Electrophysiological improvement:Corrected QT shortening(438±25 milliseconds vs 465±30 milliseconds,P<0.01).Functional enhancement:Left ventricular ejection fraction increase(58.5%±5.2%vs 53.8%±4.8%,P<0.05),left ventricular end-diastolic diameter reduction(49.8±3.5 mm vs 52.6±3.8 mm,P<0.05),Biochemical modulation:Reduced myocardial injury markers(cardiac troponin I:0.009 ng/mL vs 0.014 ng/mL;B-type natriuretic peptide:52 pg/mL vs 78 pg/mL,P<0.001),improved oxidative stress(superoxide dismutase:↑13.3 U/mL;malondialdehyde:↓0.9 nmol/mL,P<0.001),attenuated inflammation(high-sensitivity C-reactive protein:2.0 mg/L vs 3.2 mg/L,P<0.001).CONCLUSION Guanxinning significantly mitigates antipsychotic-induced cardiac injury in psychiatric patients,demonstrating:Normalization of electrophysiological parameters,Preservation of systolic/diastolic function,suppression of oxidative stress and inflammation.These findings support its clinical application as an adjunctive cardioprotective therapy,potentially through inhibition of myocardial apoptosis and antioxidant upregulation. 展开更多
关键词 GUANXINNING Antipsychotic drugs Cardiac function SCHIZOPHRENIA Cardiac protection
暂未订购
Aberrant resting-state functional connectivity in amygdala subregions among adolescents with depression and suicide attempts
12
作者 Shao-Chen Cheng Yong-Ming Wang +5 位作者 Yu-Tong Li Qian-Nan Yao Xin-Lin Huang Jian Ji Xiao-Bin Zhang Hong-Yan Sun 《World Journal of Psychiatry》 2026年第1期91-103,共13页
BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ... BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD. 展开更多
关键词 Suicide attempt ADOLESCENT Major depressive disorder AMYGDALA Functional connectivity
暂未订购
Silent cardiac burden:Echocardiographic abnormalities and their predictors in kidney transplant candidates and their impact on graft function
13
作者 Nihal Mohammed Sadagah Muhammad Abdul Mabood Khalil +3 位作者 Hinda Hassan Khideer Mahmood Ibtisam Ali Alghamdi Ghada Abdulrahman Buridi Salem H Al-Qurashi 《World Journal of Transplantation》 2026年第1期167-181,共15页
BACKGROUND An echocardiogram is an essential tool in the evaluation of potential kidney transplant recipients(KTRs).Despite cardiac clearance,potential KTRs still have structural and functional abnormalities.Identifyi... BACKGROUND An echocardiogram is an essential tool in the evaluation of potential kidney transplant recipients(KTRs).Despite cardiac clearance,potential KTRs still have structural and functional abnormalities.Identifying the prevalence of these abnormalities and understanding their predictors is vital for optimizing pretransplant risk stratification and improving post-transplant outcomes.AIM To determine the prevalence of left ventricular hypertrophy(LVH),left ventricular systolic dysfunction(LVSD),diastolic dysfunction(DD),pulmonary hypertension(PH),and their predictors,and to assess their impact on graft function in pre-transplant candidates.METHODS The study included all successful transplant candidates older than 14 who had a baseline echocardiogram.Binary logistic regression models were constructed to identify factors associated with LVH,LVSD,DD,and PH.RESULTS Out of 259 patients,LVH was present in 64%(166),12%(31)had LVSD,27.5%(71)had DD,and 66(25.5%)had PH.Independent predictors of LVH included male gender[odds ratio(OR):2.51;95%CI:1.17-5.41 P=0.02],PH(OR=2.07;95%CI:1.11-3.86;P=0.02),DD(OR:2.47;95%CI:1.29-4.73;P=0.006),and dyslipidemia(OR=1.94;95%CI:1.07-3.53;P=0.03).Predictors for LVSD included patients with DD(OR=3.3,95%CI:1.41-7.81;P=0.006)and a family history of coronary artery disease(OR=4.50,95%CI:1.33-15.20;P=0.015).Peritoneal dialysis was an independent predictor for DD(OR=10.03;95%CI:1.71-58.94,P=0.011).The presence of LVH(OR=3.32,95%CI:1.05-10.55,P=0.04)and mild to moderate or moderate to severe mitral regurgitation(OR=4.63,95%CI:1.45-14.78,P=0.01)were significant factors associated with PH.These abnormalities had no significant impact on estimated glomerular filtration at discharge,6 months,1 year,or 2 years post-transplant.CONCLUSION Significant echocardiographic abnormalities persist in a potential transplant candidate despite cardiac clearance,although they don’t affect future graft function.Understanding the risk factors associated with these abnormalities may help clinicians address these factors pre-and post-transplant to achieve better outcomes. 展开更多
关键词 Echocardiographic abnormalities Kidney transplant PREDICTORS Graft function
暂未订购
Correlation of ocular surface function with sleep quality,anxiety,and depression in patients with dry eye disease
14
作者 Yi-Long Lin Hai-Hua Liu +2 位作者 Shu-Jin Chen Qi-Hua Wan Kai-Ping Zhang 《World Journal of Psychiatry》 2026年第1期256-266,共11页
BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly... BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management. 展开更多
关键词 Dry eye disease Ocular surface function Sleep quality ANXIETY DEPRESSION
暂未订购
Cement-Based Thermoelectric Materials, Devices and Applications
15
作者 Wanqiang Li Chunyu Du +1 位作者 Lirong Liang Guangming Chen 《Nano-Micro Letters》 2026年第1期750-781,共32页
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ... Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure. 展开更多
关键词 Functional cement Thermoelectric materials Device structure Smart building
在线阅读 下载PDF
Emerging Role of 2D Materials in Photovoltaics:Efficiency Enhancement and Future Perspectives
16
作者 Ghulam Dastgeer Muhammad Wajid Zulfiqar +7 位作者 Sobia Nisar Rimsha Zulfiqar Muhammad Imran Swagata Panchanan Subhajit Dutta Kamran Akbar Alberto Vomiero Zhiming Wang 《Nano-Micro Letters》 2026年第1期843-895,共53页
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off... The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials. 展开更多
关键词 2D materials Photovoltaics Interface engineering Work function tuning Energy harvesting
在线阅读 下载PDF
Mechanistic insights into H_(2)and CO interactions with Fe_(3)O_(4)(111)surface:A computational study for hydrogen-based direct reduction process
17
作者 Xicai Liu Jue Tang +3 位作者 Mansheng Chu Zichuan Zhao Jinge Feng Jie Liu 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期191-203,共13页
The novel process of hydrogen-based shaft furnaces(HSFs)has attracted considerable attention because of their significant reduction of CO_(2)emissions.In this study,the interaction of H_(2)and CO with Fe_(tet1)-and Fe... The novel process of hydrogen-based shaft furnaces(HSFs)has attracted considerable attention because of their significant reduction of CO_(2)emissions.In this study,the interaction of H_(2)and CO with Fe_(tet1)-and Fe_(oct2)-terminated Fe_(3)O_(4)(111)surfaces under HSF conditions,including their adsorption and reduction behaviors,was investigated using the density functional theory method.The results indicated that the H_(2)molecule adsorbed onto the Fe_(tet1)-terminated surface with an adsorption energy(AE)of-1.36 eV,whereas the CO molecule preferentially adsorbed on the Fe_(oct2)-terminated surface with an AE of-1.56 eV.Both H_(2)and CO can readily undergo reduction on the Fe_(tet1)-terminated surface(corresponding to energy barriers of 0.83 eV and 2.23 eV,respectively),but kinetically the reaction of H2is more favorable than that of CO.With regard to the thermodynamics at 400-1400 K,the H_(2)was easy to be adsorbed,while the CO would like to react on the Fe_(tet1)-terminated surface.These thermodynamically tendencies were reversed on the Fe_(oct2)-terminated surface.The thermodynamic disadvantage of the reaction of H_(2)on the Fe_(tet1)-terminated surface was offset by an increase in the temperature.Furthermore,the adsorption of H2 and CO on the Fe_(tet1)-terminated surface was competitive,whereas the adsorption of them on the Fe_(oct2)-terminated surface was synergistic.Therefore,iron ores with a higher proportion of Fe_(tet1)-terminated surface can be applied for the HSF process.In conjunction with the increases in the reduction temperature and the ratio of H_(2)in the reducing gas would promote efficient HSF smelting.These observations provide effective guidance for optimizing the practical operation parameters and advancing the development of the HSF process. 展开更多
关键词 hydrogen-based shaft furnace MAGNETITE density functional theory reaction mechanism coupling mechanism
在线阅读 下载PDF
A bibliometric analysis of publication trends in strabismus over the past 30y
18
作者 Yi-Han Zhang Ying Guo +1 位作者 Shu-Jie Zhang Chen Zhao 《International Journal of Ophthalmology(English edition)》 2026年第1期149-159,共11页
AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 ... AIM:To summarize publication trends in the field of strabismus over the past 30y and predict future research hotspots.METHODS:A total of 2915 English-language articles and reviews on strabismus,published between 1993 and 2022,were retrieved from the Web of Science Core Collection.Bibliometric analyses were performed using VOSviewer and CiteSpace software to explore publication trends,as well as the contributions and collaborative networks of countries/regions,authors,institutions,and journals.RESULTS:The annual number of publications on strabismus showed a consistent upward trend.The United States(USA)maintained a leading position in this research field while Republic of Korea and China emerged as rapidly advancing contributors over the last decade.The University of California,Los Angeles ranked as the most productive institution,and Jonathan M.Holmes from USA was the most productive author.Journal of AAPOS was the leading journal with the most strabismus publications,whereas the two most highly cited articles were both published in Ophthalmology.Co-occurrence analysis identified pivotal keywords and burst terms,including intermittent exotropia(IXT),acute acquired comitant esotropia(AACE),functional magnetic resonance imaging(fMRI),and surgical treatment,which were confirmed as predominant and frontier topics.CONCLUSION:This study provides a comprehensive bibliometric analysis of strabismus research,revealing the evolution of research hotspots over the past 30y and outlining several cutting-edge directions for future investigation. 展开更多
关键词 bibliometric analysis STRABISMUS intermittent exotropia strabismus surgery functional magnetic resonance imaging research trends
原文传递
Quality-guaranteed Dubins Path Planning for USV Based on Mixed-integer Piecewise linear Programming for Addressing the Extended Minimum-time Intercept Problem
19
作者 Xing Zhou Kelin Zhu +3 位作者 Shuang Liu Zhaoqing Li Wenxin Zhang Kang Du 《哈尔滨工程大学学报(英文版)》 2026年第1期216-227,共12页
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive... During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length. 展开更多
关键词 Minimum-time intercept problem Dubins vehicle Mixed-integer piecewise-linear program LINEARIZATION Approximate error trigonometric function USV
在线阅读 下载PDF
Anionically-Reinforced Nanocellulose Separator Enables Dual Suppression of Zinc Dendrites and Polyiodide Shuttle for Long-Cycle Zn-I_(2) Batteries
20
作者 Wenhui Liu Hong Ma +4 位作者 Lingli Zhao Weiwei Qian Bo Liu Jizhang Chen Yagang Yao 《Nano-Micro Letters》 2026年第2期569-583,共15页
Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two crit... Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering. 展开更多
关键词 Zinc-iodine batteries Nanocellulose separators Carboxyl functional groups Polyiodide shuttle effect Dendrite suppression
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部