Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from R...Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from Rhododendron dauricum.The nuclear magnetic resonance(NMR)spectra of 1 and 2 showed very broad resonances,and^(13)C NMR spectrum of 1 exhibited only 13 instead of 22 carbon resonances.These broadening or missing NMR resonances led to a great challenge to elucidate their structures using NMR data analysis.Their structures and absolute configurations of 1 and 2 were finally determined by single crystal X-ray diffraction analysis,chiral separation,and electronic circular dichroism(ECD)calculations.Plausible biosynthetic pathways for 1 and 2 are proposed.Conformational analysis,density functional theory(DFT)calculations,and dynamic NMR assigned the coalescent NMR phenomena of 1 and 2 to the conformational changes of the flexible oxonane ring.Dauroxonanols A(1)and B(2)showed potentα-glucosidase inhibitory activities,2-8 times potent than acarbose,an antidiabetic drug targetingα-glucosidase in clinic.展开更多
The condensation of benzaldehyde, urea, and ethyl acetoacetate according to the procedure described by Biginelli was investigated at the B3LYP/6-31G(d), B3LYP/6-31 +G(d,p), and B3LYP/6-311+G(3df,2p)//B3LYP/6-3...The condensation of benzaldehyde, urea, and ethyl acetoacetate according to the procedure described by Biginelli was investigated at the B3LYP/6-31G(d), B3LYP/6-31 +G(d,p), and B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) levels to explore the reaction mechanism. According to the mechanism proposed by Kappe, structures of five intermediates were optimized and four transition states were found. The calculation results proved that the mechanism proposed by Kappe is right.展开更多
The composites of certain nitramine type explosives,TETRYL,RDX and EDNA,with proton in vacuum have been considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p)(restricted and ...The composites of certain nitramine type explosives,TETRYL,RDX and EDNA,with proton in vacuum have been considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p)(restricted and unrestricted).The results indicate that unexpectedly hydrogen molecule production occurs by the interaction of proton and a hydrogen of CH3(TETRYL)and CH2(RDX and EDNA)groups.As a result,a carbocation is generated on the explosive molecules.Thereafter,TETRYL which potentially has many protonation sites were investigated in more detail in vacuum and aqueous conditions.The data reveals that the composite system(TETRYL+proton)is less stable than TETRYL protonated on nitramine NH or oxygen of the nitro groups.展开更多
In recent years,scientists have become increasingly concerned in recycling electronic trash,particularly waste printed circuit boards(WPCBs).Previous research has indicated that the presence of Cu impacts the pyrolysi...In recent years,scientists have become increasingly concerned in recycling electronic trash,particularly waste printed circuit boards(WPCBs).Previous research has indicated that the presence of Cu impacts the pyrolysis of WPCBs.However,there may be errors in the experimental results,as printed circuit boards(PCBs)with copper and those without copper are produced differently.For this experiment,we blended copper powder with PCB nonmetallic resin powder in various ratios to create the samples.The apparent kinetics and pyrolysis properties of four resin powders with varying copper concentrations were compared using nonisothermal thermogravimetric analysis(TG)and thermal pyrolysis-gas chromatography mass spectrometry(Py-GC/MS).From the perspective of kinetics,the apparent activation energy of the resin powder in the pyrolysis reaction shows a rise(0.1<a<0.2)-stable(0.2<a<0.4)-accelerated increase(0.4<a<0.8)-decrease(0.8<a<0.9)process.After adding copper powder,the apparent activation energy changes more obviously when(0.2<a<0.4).In the early stage of the pyrolysis reaction(0.1<a<0.6),the apparent activation energy is reduced,but when a?0.8,it is much higher than that of the resin sample without copper.Additionally,it is discovered using thermogravimetric analysis and Py-GC/MS that copper shortens the temperature range of the primary pyrolysis reaction and prevents the creation of compounds containing bromine.This inhibition will raise the temperature at which compounds containing bromine first form,and it will keep rising as the copper level rises.The majority of the circuit board molecules have lower bond energies when copper is present,according to calculations performed using the Gaussian09 software,which promotes the pyrolysis reaction.展开更多
Mechanistic studies of the cleavage and transformation of unactivated C_(sp3)-H bonds are a significant field of chemistry.Overcoming the inherent low acidity of C-H bonds to activate the inert substrates is challenge...Mechanistic studies of the cleavage and transformation of unactivated C_(sp3)-H bonds are a significant field of chemistry.Overcoming the inherent low acidity of C-H bonds to activate the inert substrates is challenge under mild conditions.And their complex multi-step transformations may also hinder mechanistic understanding.Herein,we perform theoretical calculations and experimental studies to explore the C_(sp3)-H bonds activation and acylation mechanisms of toluene/thioether using the relatively weak base LDA.A synergistic"main and auxiliary"model was revealed involving dual lithium metal by LDA dimers,and the aryl dilithium species as an intermediate base can facilitate C_(sp3)-H activation.This model not only aids in understanding the acidity of unactivated C_(sp3)-H bonds and the nucleophilicity of their conjugate bases for their kinetic control through cooperative interactions,but also predicts unusual kinetic isotope effects(KIE)for newly designed 2-(methylthio)naphthalene that are experimentally validated.This research is expected to provide a crucial scenario for the cleavage and transformation of unactivated C_(sp3)-H bonds and the development of new functionalities for alkali metal reagents.展开更多
In this paper, quantum chemistry computation(density functional theory) of multi-airstaged combustion was investigated in combination with experiment.It was found that the presence of oxygen in the combustion environm...In this paper, quantum chemistry computation(density functional theory) of multi-airstaged combustion was investigated in combination with experiment.It was found that the presence of oxygen in the combustion environment has a great influence on the surface chemistry of coal char.In the reaction pathway, the ring-opening reaction happens first,and is followed by NO adsorption.Afterwards, the ring-closure reaction takes place, leaving the nitrogen atom trapped in the inner char molecule.This reaction route effectively inhibits NO formation and achieves the aim of controlling NO emissions.In the staged combustion experiments, the consumption of O2/NO was accompanied by an increase in the CO2 concentration.The quantum chemistry computation successfully interprets the recent experimental trends displayed in multi-air-staged combustion.展开更多
The reaction mechanism of PCl3/H2 on silicon substrate surface (simulated by Si4 cluster) was investigated with Density Functional Theory (DFT) at the B3LYP/6-311G^** level. On silicon substrate, PCl3 firstly un...The reaction mechanism of PCl3/H2 on silicon substrate surface (simulated by Si4 cluster) was investigated with Density Functional Theory (DFT) at the B3LYP/6-311G^** level. On silicon substrate, PCl3 firstly undergoes dissociative adsorption, and then the adsorption product reacts with H2 via a four-step multi-channel mode to give the final product PSi4 cluster. The geometries at each stationary point were fully optimized. The possible transition states were determined by vibrational mode analysis and IRC verification. And finally, the main reaction channel was given.展开更多
A new silver complex salt [Ag(N2C11H10)2]NO3 (where N2C11H10 = 4,5-dihydro-1H-benzo[g]indazole), has been synthesized and characterized by elemental and thermal analyses, IR and 1HNMR spectroscopies, single crystal X-...A new silver complex salt [Ag(N2C11H10)2]NO3 (where N2C11H10 = 4,5-dihydro-1H-benzo[g]indazole), has been synthesized and characterized by elemental and thermal analyses, IR and 1HNMR spectroscopies, single crystal X-ray structure determination and DFT studies. Its molecular structure comprises of a silver center coordinated to two nitrogen atoms from two 4,5-dihydro-1H-benzo[g]indazole molecule giving rise to a cationic complex entity, [Ag(N2C11H10)2]+ with as counter ion. The bulk structure is consolidated by N–H…O, C–H…π, Ag…π and Ag…O intermolecular interactions, thus generating a pseudo-helical network. The optimized structure, frontier molecular orbitals (HOMO and LUMO) and global reactivity descriptors were investigated by performing DFT calculations.展开更多
Density functional theory B3LYP/6-311 G* method was used in the geometry optimization and frequency calculation on Si5X (X = Li, Be, B, C, N, O, E Na, Mg, Al, Si, P, S, Cl) clusters. The influence of the doped seco...Density functional theory B3LYP/6-311 G* method was used in the geometry optimization and frequency calculation on Si5X (X = Li, Be, B, C, N, O, E Na, Mg, Al, Si, P, S, Cl) clusters. The influence of the doped second and third period element impurities on the structure and stability of Si5X clusters with C2p symmetry has been investigated, and the thermal stability and dynamic activity have also been discussed.展开更多
Based on DFT calculations, the catalytic mechanism of palladium(0) atom, commonly considered as the catalytic center for Sonogashira cross-coupling reactions, has been analyzed in this study. In the cross-coupling r...Based on DFT calculations, the catalytic mechanism of palladium(0) atom, commonly considered as the catalytic center for Sonogashira cross-coupling reactions, has been analyzed in this study. In the cross-coupling reaction of iodobenzene with phenylacetylene without co-catalysts and bases involved, mechanistically plausible catalytic cycles have been computationally identified. These catalytic cycles typically occur in three stages: 1) oxidative addition of an iodobenzene to the Pd(0) atom, 2) reaction of the product of oxidative addition with phenylacetylene to generate an intermediate with the Csp bound to palladium, and 3) reductive elimination to couple the phenyl group with the phenylethynyl group and to regenerate the Pd(0) atom. The calculations show that the first stage gives rise to a two-coordinate palladium (Ⅱ) intermediate (ArPdI). Starting from this intermediate, the second oxidative stage, in which the C–H bond of acetylene adds to Pd(Ⅱ) without co-catalyst involved, is called alkynylation instead of transmetalation and proceeds in two steps. Stage 3 of reductive elimination of diphenylacetylene is energetically favorable. The results demonstrate that stage 2 requires the highest activation energy in the whole catalysis cycle and is the most difficult to happen, where co-catalysts help to carry out Sonogashira coupling reaction smoothly.展开更多
A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations...A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations confirmed that the most structures in substitutional model consist of a two-coordinate bridge structure and a three-coordinate hollow structure. The calculated results can well explain the red shift in N-doped TiO2 observed in experiments. The study provides an illustration for the N-doped anatase from the viewpoint of chemical bonding theory.展开更多
Two novel coordination compounds, [Zn(L)2(OOCH)2] (1) and [Zn(L)3(OCHO)](OCHO)]·H2O (2) (where L = 2-isopropylimidazole, C6H10N2) have been prepared by reaction of 2-isopropylimidazole with zinc(II) formate at ro...Two novel coordination compounds, [Zn(L)2(OOCH)2] (1) and [Zn(L)3(OCHO)](OCHO)]·H2O (2) (where L = 2-isopropylimidazole, C6H10N2) have been prepared by reaction of 2-isopropylimidazole with zinc(II) formate at room temperature using toluene as solvent. These compounds were characterized by elemental and thermal analyses, IR, 1HNMR and 13CNMR spectroscopies, single crystal X-ray diffraction and DFT studies. The Zn centers in 1 and 2 adopt pseudo-tetrahedral coordination geometries. Compound 1 crystallizes in the monoclinic system P2/c space group whereas compound 2 crystallizes in the P-1 space group of the triclinic crystal system. Several types of hydrogen intra-/intermolecular interactions are observed in these materials and extend into a two-dimensional leaf like network in 1 and a two-dimensional lattice of rectilinear pillars in 2. Compounds 1 and 2 were also optimized and their frontier molecular orbitals, global reactivity descriptors, molecular electrostatic potential, natural bond orbitals were investigated using density functional theory (DFT). In fact the induced structural differences from complex 1 to complex 2 led to the reduction of the frontier molecular orbital energy gap by 1.338 eV and a decrease of the chemical hardness by 0.669 eV.展开更多
Density(p)and speed of sound(u)findings on the binary liquid mixtures consisting of cyclohexanol(CH—OH),with aniline(A),ortho-chloroaniline(o-CA),and meta-chloroaniline(m-CA)were gathered at the various temperatures ...Density(p)and speed of sound(u)findings on the binary liquid mixtures consisting of cyclohexanol(CH—OH),with aniline(A),ortho-chloroaniline(o-CA),and meta-chloroaniline(m-CA)were gathered at the various temperatures spanning the entire concentration range.303.15,308.15,313.15 and 318.15 K at atmospheric pressure.The information measured there was utilized to compute excess molar volume(V_(m)^(E)),excess isentropic compressibility(K_(S)^(E)),excess of speed of sound(u^(F)),excess intermolecular free length(L_(f)^(F))and excess acoustic impedance(Z^(F)).Further,the partial molar volumes(^(-)V°_(m,1).^(-)V°_(φ,1).^(-)V°_(m,2).^(-)V°_(φ,2)),partial molar compressibilities(K°_(m,1).^(-)K°_(φ,1).^(-)K°_(m,2).^(-)K°_(φ,2))and their excess values(^(-)V^(E)_(m,1).^(-)V^(°E)_(φ,1).^(-)V^(E)_(m,2).^(-)V^(°E)_(φ,2)),(K^(E)_(m,1).^(-)K^(°E)_(φ,1).^(-)K^(E)_(m,2).^(-)K^(°E)_(φ,2))were also computed to perceive more information on molecular interaction and structural effects in these mixtures.Applying the theory of Prigogine-Flory-Patterson(PFP)as a framework,the V_(m)^(E)data of the current liquid mixtures were examined.The analysis of the experimental data took into consideration the interactions that occur between the individual molecules that make up liquid mixtures.By using density functional theory DFT(B3LYP)of 6-31++G(d,P)to analyze the geometries,bond characteristics,interaction energies,and hydrogen bonded complexes in organic solvent phase,quantum chemical calculations were able to further confirm the hydrogen bonding that predominates between cyclohexanol with aniline and chlorosubstituted anilines.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22207036,22277034,22477034,and 22107033)Interdisciplinary Research Program of Huazhong University of Science and Technology(No.2023JCYJ037)International Cooperation Project of Hubei Provincial Key R&D Plan(No.2023EHA040)。
文摘Two pairs of novel 6/6/6/9 tetracyclic merosesquiterpenoid enantiomers,dauroxonanols A(1)and B(2),possessing an unprecedented 9,15-dioxatetracyclo[8.5.3.0^(4.17).0^(14.18)]octadecane core skeleton,were isolated from Rhododendron dauricum.The nuclear magnetic resonance(NMR)spectra of 1 and 2 showed very broad resonances,and^(13)C NMR spectrum of 1 exhibited only 13 instead of 22 carbon resonances.These broadening or missing NMR resonances led to a great challenge to elucidate their structures using NMR data analysis.Their structures and absolute configurations of 1 and 2 were finally determined by single crystal X-ray diffraction analysis,chiral separation,and electronic circular dichroism(ECD)calculations.Plausible biosynthetic pathways for 1 and 2 are proposed.Conformational analysis,density functional theory(DFT)calculations,and dynamic NMR assigned the coalescent NMR phenomena of 1 and 2 to the conformational changes of the flexible oxonane ring.Dauroxonanols A(1)and B(2)showed potentα-glucosidase inhibitory activities,2-8 times potent than acarbose,an antidiabetic drug targetingα-glucosidase in clinic.
文摘The condensation of benzaldehyde, urea, and ethyl acetoacetate according to the procedure described by Biginelli was investigated at the B3LYP/6-31G(d), B3LYP/6-31 +G(d,p), and B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) levels to explore the reaction mechanism. According to the mechanism proposed by Kappe, structures of five intermediates were optimized and four transition states were found. The calculation results proved that the mechanism proposed by Kappe is right.
文摘The composites of certain nitramine type explosives,TETRYL,RDX and EDNA,with proton in vacuum have been considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p)(restricted and unrestricted).The results indicate that unexpectedly hydrogen molecule production occurs by the interaction of proton and a hydrogen of CH3(TETRYL)and CH2(RDX and EDNA)groups.As a result,a carbocation is generated on the explosive molecules.Thereafter,TETRYL which potentially has many protonation sites were investigated in more detail in vacuum and aqueous conditions.The data reveals that the composite system(TETRYL+proton)is less stable than TETRYL protonated on nitramine NH or oxygen of the nitro groups.
基金supported by the National Key Research and Development Program of China(2018YFC1902504).
文摘In recent years,scientists have become increasingly concerned in recycling electronic trash,particularly waste printed circuit boards(WPCBs).Previous research has indicated that the presence of Cu impacts the pyrolysis of WPCBs.However,there may be errors in the experimental results,as printed circuit boards(PCBs)with copper and those without copper are produced differently.For this experiment,we blended copper powder with PCB nonmetallic resin powder in various ratios to create the samples.The apparent kinetics and pyrolysis properties of four resin powders with varying copper concentrations were compared using nonisothermal thermogravimetric analysis(TG)and thermal pyrolysis-gas chromatography mass spectrometry(Py-GC/MS).From the perspective of kinetics,the apparent activation energy of the resin powder in the pyrolysis reaction shows a rise(0.1<a<0.2)-stable(0.2<a<0.4)-accelerated increase(0.4<a<0.8)-decrease(0.8<a<0.9)process.After adding copper powder,the apparent activation energy changes more obviously when(0.2<a<0.4).In the early stage of the pyrolysis reaction(0.1<a<0.6),the apparent activation energy is reduced,but when a?0.8,it is much higher than that of the resin sample without copper.Additionally,it is discovered using thermogravimetric analysis and Py-GC/MS that copper shortens the temperature range of the primary pyrolysis reaction and prevents the creation of compounds containing bromine.This inhibition will raise the temperature at which compounds containing bromine first form,and it will keep rising as the copper level rises.The majority of the circuit board molecules have lower bond energies when copper is present,according to calculations performed using the Gaussian09 software,which promotes the pyrolysis reaction.
基金the National Key Research and Development Program of China(No.2021YFA1500100)the National Natural Science Foundation of China(Nos.92156017 and 21890722)+1 种基金“Frontiers Science Center for New Organic Matter”,Nankai University(No.63181206)Haihe Laboratory of Sustainable Chemical Transformation of Tianjin(No.24HHWCSS00019)for generous financial support。
文摘Mechanistic studies of the cleavage and transformation of unactivated C_(sp3)-H bonds are a significant field of chemistry.Overcoming the inherent low acidity of C-H bonds to activate the inert substrates is challenge under mild conditions.And their complex multi-step transformations may also hinder mechanistic understanding.Herein,we perform theoretical calculations and experimental studies to explore the C_(sp3)-H bonds activation and acylation mechanisms of toluene/thioether using the relatively weak base LDA.A synergistic"main and auxiliary"model was revealed involving dual lithium metal by LDA dimers,and the aryl dilithium species as an intermediate base can facilitate C_(sp3)-H activation.This model not only aids in understanding the acidity of unactivated C_(sp3)-H bonds and the nucleophilicity of their conjugate bases for their kinetic control through cooperative interactions,but also predicts unusual kinetic isotope effects(KIE)for newly designed 2-(methylthio)naphthalene that are experimentally validated.This research is expected to provide a crucial scenario for the cleavage and transformation of unactivated C_(sp3)-H bonds and the development of new functionalities for alkali metal reagents.
基金supported by the National Natural Science Foundation of China(Nos.51776123,51806140 and 51575335)the Shanghai Yangfan program of China(No.19YF1418000).
文摘In this paper, quantum chemistry computation(density functional theory) of multi-airstaged combustion was investigated in combination with experiment.It was found that the presence of oxygen in the combustion environment has a great influence on the surface chemistry of coal char.In the reaction pathway, the ring-opening reaction happens first,and is followed by NO adsorption.Afterwards, the ring-closure reaction takes place, leaving the nitrogen atom trapped in the inner char molecule.This reaction route effectively inhibits NO formation and achieves the aim of controlling NO emissions.In the staged combustion experiments, the consumption of O2/NO was accompanied by an increase in the CO2 concentration.The quantum chemistry computation successfully interprets the recent experimental trends displayed in multi-air-staged combustion.
基金supported by the Foundation of Education Committee of Liaoning Province (990321076)
文摘The reaction mechanism of PCl3/H2 on silicon substrate surface (simulated by Si4 cluster) was investigated with Density Functional Theory (DFT) at the B3LYP/6-311G^** level. On silicon substrate, PCl3 firstly undergoes dissociative adsorption, and then the adsorption product reacts with H2 via a four-step multi-channel mode to give the final product PSi4 cluster. The geometries at each stationary point were fully optimized. The possible transition states were determined by vibrational mode analysis and IRC verification. And finally, the main reaction channel was given.
文摘A new silver complex salt [Ag(N2C11H10)2]NO3 (where N2C11H10 = 4,5-dihydro-1H-benzo[g]indazole), has been synthesized and characterized by elemental and thermal analyses, IR and 1HNMR spectroscopies, single crystal X-ray structure determination and DFT studies. Its molecular structure comprises of a silver center coordinated to two nitrogen atoms from two 4,5-dihydro-1H-benzo[g]indazole molecule giving rise to a cationic complex entity, [Ag(N2C11H10)2]+ with as counter ion. The bulk structure is consolidated by N–H…O, C–H…π, Ag…π and Ag…O intermolecular interactions, thus generating a pseudo-helical network. The optimized structure, frontier molecular orbitals (HOMO and LUMO) and global reactivity descriptors were investigated by performing DFT calculations.
基金This work was supported by Foundation of Education Committee of Liaoning Province (No. 990321076)
文摘Density functional theory B3LYP/6-311 G* method was used in the geometry optimization and frequency calculation on Si5X (X = Li, Be, B, C, N, O, E Na, Mg, Al, Si, P, S, Cl) clusters. The influence of the doped second and third period element impurities on the structure and stability of Si5X clusters with C2p symmetry has been investigated, and the thermal stability and dynamic activity have also been discussed.
基金Supported by the NNSFC (20674034)Natural Science Youth Foundation of Jiangxi Province (No. 2010GQH0028)
文摘Based on DFT calculations, the catalytic mechanism of palladium(0) atom, commonly considered as the catalytic center for Sonogashira cross-coupling reactions, has been analyzed in this study. In the cross-coupling reaction of iodobenzene with phenylacetylene without co-catalysts and bases involved, mechanistically plausible catalytic cycles have been computationally identified. These catalytic cycles typically occur in three stages: 1) oxidative addition of an iodobenzene to the Pd(0) atom, 2) reaction of the product of oxidative addition with phenylacetylene to generate an intermediate with the Csp bound to palladium, and 3) reductive elimination to couple the phenyl group with the phenylethynyl group and to regenerate the Pd(0) atom. The calculations show that the first stage gives rise to a two-coordinate palladium (Ⅱ) intermediate (ArPdI). Starting from this intermediate, the second oxidative stage, in which the C–H bond of acetylene adds to Pd(Ⅱ) without co-catalyst involved, is called alkynylation instead of transmetalation and proceeds in two steps. Stage 3 of reductive elimination of diphenylacetylene is energetically favorable. The results demonstrate that stage 2 requires the highest activation energy in the whole catalysis cycle and is the most difficult to happen, where co-catalysts help to carry out Sonogashira coupling reaction smoothly.
基金Supported by the National Natural Science Foundation of China (No. 20503021)National Basic Research Program of China (2007CB815301)
文摘A systematic study on geometry, electronic structure and vibrational properties of N-doped TiO2 anatase cluster, within the framework of the density functional theory, has been performed in this work. The calculations confirmed that the most structures in substitutional model consist of a two-coordinate bridge structure and a three-coordinate hollow structure. The calculated results can well explain the red shift in N-doped TiO2 observed in experiments. The study provides an illustration for the N-doped anatase from the viewpoint of chemical bonding theory.
文摘Two novel coordination compounds, [Zn(L)2(OOCH)2] (1) and [Zn(L)3(OCHO)](OCHO)]·H2O (2) (where L = 2-isopropylimidazole, C6H10N2) have been prepared by reaction of 2-isopropylimidazole with zinc(II) formate at room temperature using toluene as solvent. These compounds were characterized by elemental and thermal analyses, IR, 1HNMR and 13CNMR spectroscopies, single crystal X-ray diffraction and DFT studies. The Zn centers in 1 and 2 adopt pseudo-tetrahedral coordination geometries. Compound 1 crystallizes in the monoclinic system P2/c space group whereas compound 2 crystallizes in the P-1 space group of the triclinic crystal system. Several types of hydrogen intra-/intermolecular interactions are observed in these materials and extend into a two-dimensional leaf like network in 1 and a two-dimensional lattice of rectilinear pillars in 2. Compounds 1 and 2 were also optimized and their frontier molecular orbitals, global reactivity descriptors, molecular electrostatic potential, natural bond orbitals were investigated using density functional theory (DFT). In fact the induced structural differences from complex 1 to complex 2 led to the reduction of the frontier molecular orbital energy gap by 1.338 eV and a decrease of the chemical hardness by 0.669 eV.
文摘Density(p)and speed of sound(u)findings on the binary liquid mixtures consisting of cyclohexanol(CH—OH),with aniline(A),ortho-chloroaniline(o-CA),and meta-chloroaniline(m-CA)were gathered at the various temperatures spanning the entire concentration range.303.15,308.15,313.15 and 318.15 K at atmospheric pressure.The information measured there was utilized to compute excess molar volume(V_(m)^(E)),excess isentropic compressibility(K_(S)^(E)),excess of speed of sound(u^(F)),excess intermolecular free length(L_(f)^(F))and excess acoustic impedance(Z^(F)).Further,the partial molar volumes(^(-)V°_(m,1).^(-)V°_(φ,1).^(-)V°_(m,2).^(-)V°_(φ,2)),partial molar compressibilities(K°_(m,1).^(-)K°_(φ,1).^(-)K°_(m,2).^(-)K°_(φ,2))and their excess values(^(-)V^(E)_(m,1).^(-)V^(°E)_(φ,1).^(-)V^(E)_(m,2).^(-)V^(°E)_(φ,2)),(K^(E)_(m,1).^(-)K^(°E)_(φ,1).^(-)K^(E)_(m,2).^(-)K^(°E)_(φ,2))were also computed to perceive more information on molecular interaction and structural effects in these mixtures.Applying the theory of Prigogine-Flory-Patterson(PFP)as a framework,the V_(m)^(E)data of the current liquid mixtures were examined.The analysis of the experimental data took into consideration the interactions that occur between the individual molecules that make up liquid mixtures.By using density functional theory DFT(B3LYP)of 6-31++G(d,P)to analyze the geometries,bond characteristics,interaction energies,and hydrogen bonded complexes in organic solvent phase,quantum chemical calculations were able to further confirm the hydrogen bonding that predominates between cyclohexanol with aniline and chlorosubstituted anilines.