In this paper,chemical co-precipitation method was employed to synthesize Fe3O4 nanoparticles which can be well dispersed in water by using citric acid as a surfactant.Afterwards,by using Fe3O4 nanoparticles as seeds ...In this paper,chemical co-precipitation method was employed to synthesize Fe3O4 nanoparticles which can be well dispersed in water by using citric acid as a surfactant.Afterwards,by using Fe3O4 nanoparticles as seeds in a Triton X-100/hexanol/cyclohexane/water reverse microemulsion system,the core-shell structural Fe3O4@SiO2 nanocomposite particles were prepared via hydrolysis and condensation of tetraethyl orthosilicate(TEOS) under the catalysis of alkali.The effects of different stirring methods and the concentration of TEOS on the morphology of Fe3O4@SiO2 nanoparticles were investigated.The results show that the mechanical stirring can effectively control the morphology of composite nanoparticles to form a good dispersion and spherical morphology of core-shell nanoparticles.With the increase of TEOS concentration,the thickness of the SiO2 shell increases,and the morphology of the composite particles becomes more uniform.展开更多
A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordinati...A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb^2+ thus inducing the transformation of Fe/Fe3O4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T2) of the surrounding water protons. Upon addition of the different concentrations of Pb^2+ to an aq. solution of DHCA functionalized Fe/Fe3O4 nanoparticles(DHCA-Fe/Fe3O4 NPs)([Fe] = 90 mmol/L), the change of T2 values display a good linear relationship with the concentration of Pb^2+ from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb^2+, DHCA-Fe/Fe3O4 NPs exhibited a high selectivity over other metal ions.展开更多
文摘In this paper,chemical co-precipitation method was employed to synthesize Fe3O4 nanoparticles which can be well dispersed in water by using citric acid as a surfactant.Afterwards,by using Fe3O4 nanoparticles as seeds in a Triton X-100/hexanol/cyclohexane/water reverse microemulsion system,the core-shell structural Fe3O4@SiO2 nanocomposite particles were prepared via hydrolysis and condensation of tetraethyl orthosilicate(TEOS) under the catalysis of alkali.The effects of different stirring methods and the concentration of TEOS on the morphology of Fe3O4@SiO2 nanoparticles were investigated.The results show that the mechanical stirring can effectively control the morphology of composite nanoparticles to form a good dispersion and spherical morphology of core-shell nanoparticles.With the increase of TEOS concentration,the thickness of the SiO2 shell increases,and the morphology of the composite particles becomes more uniform.
基金supported by National Natural Science Foundation of China (Nos. 21271130 and 21371122)Shanghai Science and Technology Development Fund (Nos. 12ZR1421800 and 13520502800)International Joint Laboratory on Resource Chemistry (IJLRC)
文摘A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb^2+ thus inducing the transformation of Fe/Fe3O4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T2) of the surrounding water protons. Upon addition of the different concentrations of Pb^2+ to an aq. solution of DHCA functionalized Fe/Fe3O4 nanoparticles(DHCA-Fe/Fe3O4 NPs)([Fe] = 90 mmol/L), the change of T2 values display a good linear relationship with the concentration of Pb^2+ from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb^2+, DHCA-Fe/Fe3O4 NPs exhibited a high selectivity over other metal ions.