Zebrafish larvae are useful for identifying chemicals against lateral line(LL)hair cell(HC)damage and this type of chemical screen mainly focuses on searching for protectors against cell death.To expand the candidate ...Zebrafish larvae are useful for identifying chemicals against lateral line(LL)hair cell(HC)damage and this type of chemical screen mainly focuses on searching for protectors against cell death.To expand the candidate pool of HC protectors,a self-built acoustic escape response(AER)-detecting system was developed to apply both low-frequency near-field sound transmission and AER image acquisition/processing modules.The device quickly confirmed the changed LL HC functions caused by most known ototoxins,protectors,and neural transmission modifiers,or knockdown of LL HC-expressing genes.With ten devices wired in tandem,five‘hit’chemicals were identified from 124 cyclin-dependent kinase inhibitors to partially restore cisplatin-damaged AER in less than a day.AS2863619,ribociclib,and SU9516 among the hits,protected the HCs in the mouse cochlea.Therefore,using free-swimming larval zebrafish,the self-made AER-detecting device can efficiently identify compounds that are protective against HC damage,including cell death and loss-of-function.展开更多
Silicon-air(Si-air)batteries have received significant attention owing to their high theoretical energy density and safety profile.However,the actual energy density of the Si-air battery remains significantly lower th...Silicon-air(Si-air)batteries have received significant attention owing to their high theoretical energy density and safety profile.However,the actual energy density of the Si-air battery remains significantly lower than the theoretical value,primarily due to corrosion issues and passivation.This study used various metal-organic framework(MOF)materials,such as MIL-53(Al),MIL-88(Fe),and MIL-101(Cr),to modify Si anodes.The MOFs were fabricated to have different morphologies,particle sizes,and pore sizes by altering their central metal nodes and ligands.This approach aimed to modulate the adsorption behavior of H_(2)O,SiO_(2),and OH^(−),thereby mitigating corrosion and passivation reactions.Under a constant current of 150μA,Si-air batteries with MIL-53(Al)@Si,MIL-88(Fe)@Si,and MIL-101(Cr)@Si as anodes demonstrated lifetimes of 293,412,and 336 h,respectively,surpassing the 276 h observed with pristine silicon anodes.Among these composite anodes,MIL-88(Fe)@Si displayed the best performance due to its superior hydrophobicity and optimal pore size,which enhance OH^(−)migration.This study offers a promising strategy for enhancing Si-air battery performance by developing an anodic protective layer with selective screening properties.展开更多
Magnetic nanoparticles(MNPs) are widely used for the immobilization of enzyme owing to the unique properties such as good biocompatibility and rapid separation. Herein, we used Fe_3O_4 magnetic nanoparticles(Fe_3O_4 M...Magnetic nanoparticles(MNPs) are widely used for the immobilization of enzyme owing to the unique properties such as good biocompatibility and rapid separation. Herein, we used Fe_3O_4 magnetic nanoparticles(Fe_3O_4 MNPs) as the carrier core with(3-aminopropyl)triethoxysilane(APTES)modification by our approach, in which a-glucosidase was stereoscopically immobilized on the surface of Fe_3O_4 MNPs via covalent binding. The result of immobilization was characterized by scanning electron microscope(SEM) and fourier transform-infrared spectroscopy(FT-IR). Then we optimized some key parameters of the immobilization reaction, including the ratio of MNPs to enzyme, GA concentration,crosslinking time and immobilization time. Moreover, under the optimal conditions, pH tolerance,thermo stability and reusability of the immobilized enzyme were investigated and compared with the free one. In order to evaluate the change of the affinity of the enzyme to its specific substrate after immobilization, the Michaelis-Menten constant(K_m) was also studied. Finally, the immobilized α-glucosidase combining with high performance liquid chromatography-tandem mass spectrometry technique(HPLC-MS/MS) was applied to screen and identify eight inhibitors from Polygonum cuspidatum extract. These results indicated that the established method had the broad prospects for biotechnological applications.展开更多
Colorectal cancer(CRC)is a prevalent malignancy worldwide,posing a significant public health concern.Mounting evidence has confirmed that timely early screening facilitates the detection of incipient CRC,thereby enhan...Colorectal cancer(CRC)is a prevalent malignancy worldwide,posing a significant public health concern.Mounting evidence has confirmed that timely early screening facilitates the detection of incipient CRC,thereby enhancing patient prognosis.Obviously,non-participation of asymptomatic individuals in screening programs hampers early diagnosis and may adversely affect long-term outcomes for CRC patients.In this letter,we provide a comprehensive overview of the current status of early screening practices,while also thoroughly examine the dilemmas and potential solutions associated with early screening for CRC.In response to these issues,we proffer a set of recommendations directed at governmental authorities and the general public,which focus on augmenting financial investment,establishing standardized screening protocols,advancing technological capabilities,and bolstering public awareness campaigns.The importance of collaborative efforts from various stakeholders cannot be overstated in the quest to enhance early detection rates and alleviate the societal burden of CRC.展开更多
A multifunctional integrated microfluidic biochip device was engineered to estimate the activity-toxicity and composition principle of medicine in a cell model in vitro. This biochip could be used for disease cells an...A multifunctional integrated microfluidic biochip device was engineered to estimate the activity-toxicity and composition principle of medicine in a cell model in vitro. This biochip could be used for disease cells and healthy cells in two modules of "Yin-Yang" on the same chip for detecting the medicine efficacytoxicity simultaneously, as well as adjust different gradient ratios of concentration through the Christmas tree structure in both "Yin-Yang" modules autonomously for detecting the best compatibility of medicine in maximum efficacy and minimal toxicity. In the applicability experiment, the best concentration of three chemical compounds including dinatin, diosmetin and cisplatin, were detected using the biochip and traditional 96-cell plate. Biochip assays showed perfect positive correlation compared with the results of traditional 96-cell plate, in addition presented advantages as less detection time and much lower price than the traditional 96-cell plate, which indicated the biochip is both convenient and feasible.Thus, the novel microfluidic chip-based multifunctional integrated system congregated the virtues of high throughput, rapid, sensitive, specific, cost-effective, and similar to the physical environment of the human body, which was especially suitable for the medicine efficacy-toxicity and compatibility evaluation.展开更多
Xanthomonas oryzae pv.oryzae(Xoo) is an important rice pathogen.This is a vascular pathogen entering the plant via the hydathodes causing rice bacterial blight.It has been known that most regulation of pathogenicity f...Xanthomonas oryzae pv.oryzae(Xoo) is an important rice pathogen.This is a vascular pathogen entering the plant via the hydathodes causing rice bacterial blight.It has been known that most regulation of pathogenicity factor F(RpfF) genes in Xanthomonas regulates virulence in response to the diffusible signal factor(DSF).The RpfF recognized as an attractive drug target in bacterial rice blight disease.In this study,we performed the gene-gene interaction of RpfF and pathway functional analysis.3 D structure of RpfF protein was predicted using a homology modelling tool Swiss-Model and refined by molecular dynamics(MD) simulation.The refined model protein was predicted structural assessment using various tools such as PROCHECK,ERRAT,and VERIFY-3 D.We have collected 2 500 rifampicin analogues from Zinc Database by virtual screening.The screened compounds were docked into the active site of the RpfF protein using AutoDock Vina in PyRx Virtual Screening Tool.Furthermore,docking result and in silico ADMET analysis described that the compounds ZINC03056414,ZINC03205310,ZINC08673779,ZINC09100848,ZINC09729566,ZINC11415953,ZINC12810788,ZINC24989313,ZINC27441787 and ZINC32739565 have best binding energies and less toxicity than reference compound.This study revealed that the active site residues such as HIS-118,HIS-147,THR-148,ARG-179,ASP-207,ARG-240 and THR-244 are key roles in the pathogenicity.It could be beneficial in the design of small molecule therapeutics or the treatment of rice bacterial blight disease.展开更多
Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of m...Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of medicine,food,and agriculture.However,efficiently screening AMPs from natural sources poses several challenges,including low efficiency and high antibiotic resistance.This review focuses on the action mechanisms of AMPs,both through membrane and non-membrane routes.We thoroughly examine various highly efficient AMP screening methods,including whole-bacterial adsorption binding,cell membrane chromatography(CMC),phospholipid membrane chromatography binding,membranemediated capillary electrophoresis(CE),colorimetric assays,thin layer chromatography(TLC),fluorescence-based screening,genetic sequencing-based analysis,computational mining of AMP databases,and virtual screening methods.Additionally,we discuss potential developmental applications for enhancing the efficiency of AMP discovery.This review provides a comprehensive framework for identifying AMPs within complex natural product systems.展开更多
Background Early screening of cognitive function is critical to dementia treatment and care.However,traditional tests require face-to-face administration and are often limited by implementation costs and biases.Aims T...Background Early screening of cognitive function is critical to dementia treatment and care.However,traditional tests require face-to-face administration and are often limited by implementation costs and biases.Aims This study aimed to assess whether the Thoven Cognitive Self-Assessment(TCSA),a novel,innovative two-step touchscreen-based cognition assessment tool,could identify early cognitive impairment due to dementia in older adults.Methods The TCSA was administered to 61 healthy controls(HCs),46 participants with mild cognitive impairment(MCI)and 44 participants diagnosed with dementia recruited from Shanghai.Two outcome measures were generated from the TCSA test:the TCSA_(primary task)score and the TCSA_(secondary task)score.Results The total average scores in the control group for the TCSA_(primary task)and TCSA_(secondary task)were significantly higher than those in the MCI and dementia groups(TCSA_(primary task):HCs vs MCI group vs dementia group,8.58±1.76 vs 5.40±2.67 vs 2.74±2.11,F=75.40,p<0.001;TCSA_(secondary task):HCs vs MCI group vs dementia group,23.02±3.31 vs 17.95±4.93 vs 11.93±5.50,F=76.46,p<0.001).Moreover,receiver operating characteristic analysis showed that a score below 7.5 for the TCSA_(primary task)and a score below 22.5 for the TCSA_(secondary task)were indicators of MCI.Conclusions The TCSA appears to be efficacious for the detection of cognitive impairment in older adults.It demonstrates the potential for large-scale cognition screening in community service settings.展开更多
Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the G...Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development,an environmental concern that increasingly limits its utilization.This study further improves the Molybdenum Blue(MB)colorimetric method to allow for faster screening with more stable reagents.More importantly,a portable three-channel colorimeter is developed for screening iAs relative to the WHO drinking water guideline value(10μg/L).Adding the reducing reagents in sequence not only prolongs the storage time to>7 days,but also accelerates the color development time to 6 min in conjunction with lowering the H_(2)SO_(4) concentration in chromogenic reagents.The optimal pH ranges from 1.2 to 1.3 and is achieved by acidifying groundwater to 1%(V/V)HCl.With detection limits of 3.7μg/L for inorganic arsenate(iAs(V))and 3.8μg/L for inorganic arsenite(iAs(Ⅲ)),testing groundwater with-10μg/L of As has a precision<20%.The method works well for a range of phosphate concentrations of 48-950μg/L(0.5-10μmol/L).Concentrations of total_iAs(6-300μg/L),iAs(V)(6-230μg/L)and iAs(Ⅲ)(0-170μg/L)for 14 groundwater samples from Yinchuan Plain,Pearl River Delta,and Jianghan Plain,are in excellent agreements(linear regression slope:0.969-1.029)with the benchmark methods.The improved chemistry here lays the foundation for the MB colorimetric method to become a commercially viable screening tool,with further engineering and design improvement of the colorimeter.展开更多
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state b...Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration.展开更多
This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons(PAHs)and their derivatives in one Chinese petroleum refinery facility.It was found that,following with high con...This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons(PAHs)and their derivatives in one Chinese petroleum refinery facility.It was found that,following with high concentrations of 16 EPA PAHs(∑Parent-PAHs)in smelting subarea of studied petroleum refinery facility,total derivatives of PAHs[named as XPAHs,including nitro PAHs(NPAHs),chlorinated PAHs(Cl-PAHs),and brominated PAHs(Br-PAHs)]in gas(mean=1.57×10^(4)ng/m^(3)),total suspended particulate(TSP)(mean=4.33×10^(3) ng/m^(3))and soil(mean=4.37×10^(3) ng/g)in this subarea had 1.76-6.19 times higher levels than those from other subareas of this facility,surrounding residential areas and reference areas,indicating that petroleum refining processes would lead apparent derivation of PAHs.Especially,compared with those in residential and reference areas,gas samples in the petrochemical areas had higher∑NPAH/∑PAHs(mean=2.18),but lower∑Cl-PAH/∑PAHs(mean=1.43×10^(-1))and∑Br-PAH/∑PAHs ratios(mean=7.49×10^(-2)),indicating the richer nitrification of PAHs than chlorination during petrochemical process.The occupational exposure to PAHs and XPAHs in this petroleum refinery facility were 24-343 times higher than non-occupational exposure,and the ILCR(1.04×10^(-4))for petrochemical workers was considered to be potential high risk.Furthermore,one expanded high-resolution screening through GC Orbitrap/MS was performed for soils from petrochemical area,and another 35 PAHs were found,including alkyl-PAHs,phenyl-PAHs and other species,indicat-ing that profiles and risks of PAHs analogs in petrochemical areas deserve further expanded investigation.展开更多
Liver transplantation(LT)is the definitive treatment for end-stage liver disease,acute liver failure,and liver cancer.Although advancements in surgical techniques,postoperative care,and immunosuppressive therapies hav...Liver transplantation(LT)is the definitive treatment for end-stage liver disease,acute liver failure,and liver cancer.Although advancements in surgical techniques,postoperative care,and immunosuppressive therapies have significantly improved outcomes,the long-term use of immunosuppression has increased the risk of complications,including infections,cardiovascular disease,and cancer.Among these,de novo malignancies(DNMs)are a major concern,accounting for 20%-25%of deaths in LT recipients surviving beyond the early post-transplant period.Non-melanoma skin cancers,particularly squamous cell carcinoma are the most prevalent DNMs.Other significant malignancies include Kaposi's sarcoma,post-transplant lymphoproliferative disorders,and various solid organ cancers,including head and neck cancers.Compared to the general population,LT patients face a twofold increase in solid organ malignancies and a 30-fold increase in lymphoproliferative disorders.Risk factors for DNM include chronic immunosuppression,alcohol or tobacco use,viral infections,and underlying liver disease.Emerging evidence emphasizes the importance of tailored cancer screening and prevention strategies,including regular dermatological examinations,targeted screenings for high-risk cancers,and patient education on lifestyle modifications.Early detection through enhanced surveillance protocols has been shown to improve outcomes.Management of DNMs involves a combination of standard oncological therapies and adjustments to immunosuppressive regimens,with promising results from the use of mTOR inhibitors in select patients.The review highlights the critical need for ongoing research to refine risk stratification,optimize screening protocols,and improve treatment approaches to mitigate the burden of DNMs in LT recipients.By implementing personalized preventive and therapeutic strategies,we can enhance long-term outcomes and quality of life for this vulnerable population.展开更多
Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI pre...Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.展开更多
Helicobacter pylori(H.pylori)infection induces pathological changes via chronic inflammation and virulence factors,thereby increasing the risk of gastric cancer development.Compared with invasive examination methods,H...Helicobacter pylori(H.pylori)infection induces pathological changes via chronic inflammation and virulence factors,thereby increasing the risk of gastric cancer development.Compared with invasive examination methods,H.pylori-related serum indicators are cost-effective and valuable for the early detection of gastric cancer(GC);however,large-scale clinical validation and sufficient understanding of the specific molecular mechanisms involved are lacking.Therefore,a comprehensive review and analysis of recent advances in this field is necessary.In this review,we systematically analyze the relationship between H.pylori and GC and discuss the application of new molecular biomarkers in GC screening.We also summarize the screening potential and application of anti-H.pylori immunoglobulin G and virulence factor-related serum antibodies for identifying GC risk.These indicators provide early warning of infection and enhance screening accuracy.Additionally,we discuss the potential combination of multiple screening indicators for the comprehensive analysis and development of emerging testing methods to improve the accuracy and efficiency of GC screening.Although this review may lack sufficient evidence due to limitations in existing studies,including small sample sizes,regional variations,and inconsistent testing methods,it contributes to advancing personalized precision medicine in high-risk populations and developing GC screening strategies.展开更多
A metagenomic fosmid library of approximately 52 000 clones was constructed to identify functional genes encoding cold-adapted enzymes. Metagenomic DNA was extracted from a sample of glacial meltwater, collected on th...A metagenomic fosmid library of approximately 52 000 clones was constructed to identify functional genes encoding cold-adapted enzymes. Metagenomic DNA was extracted from a sample of glacial meltwater, collected on the Antarctic Peninsula during the ANTARKOS XXIX Expedition during the austral summer of 2012-2013. Each clone contained an insert of about 35-40 kb, so the library represented almost 2 Gb of genetic information from metagenomic DNA. Activity-driven screening was used to detect the cold-adapted functions expressed by the library. Fifty lipase/esterase and two cellulase-producing clones were isolated, and two clones able to grow on Avicel as the sole carbon source. Interestingly, three clones formed a brown precipitate in the presence of manganese (II). Accumulation of manganese oxides was determined with a leucoberbelin blue assay, indicating that these three clones had manganese-oxidizing activity. To the best of our knowledge, this is the first report of a manganese oxidase activity detected with a functional metagenomic strategy.展开更多
The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with ...The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with improved catalytic performance.Herein,various O‐functional MXenes were investigated as NRR catalysts by a combination of density functional theory calculations and least absolute shrinkage and selection operator(LASSO)regression.Nb_(3)C_(2)O_(X) has been regarded as a promising catalyst for the NRR because of its stability,activity,and selectivity.The poten‐tial‐determining step is*NH_(2) hydrogenation to*NH3 with a limiting potential of-0.45 V.Further‐more,via LASSO regression,the descriptors and equations fitting the relationship between the properties of O‐functional MXenes and NRR activity have been proposed.This work not only pro‐vides a rational design strategy for catalysts but also provides machine learning data for further investigation.展开更多
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str...The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction.展开更多
Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transforma...Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.展开更多
Phosphonates have been frequently used as suitable isosteric and isoelectronic replacements for biologically important phosphates in the development of drugs or drug candidates because of their stability toward the ac...Phosphonates have been frequently used as suitable isosteric and isoelectronic replacements for biologically important phosphates in the development of drugs or drug candidates because of their stability toward the action of phosphatases and other enzymes.In this paper,12 mono-phosphonate inositol compounds were prepared with phosphonate instead of phosphate by two kinds of strategies,nucleophilic substitution and Arbuzov rearrangement,respectively.All compounds were evaluated in vitro for their activity against non-small cell lung cancer(NSCLC) cell line A549.Two compounds(3ac and 3bb) exhibited good antitumor activity at 10 mg/mL.展开更多
Colorectal cancer(CRC)is the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide.The leading risk factors for CRC include male gender,age over 50,family history,obesity,tobacco ...Colorectal cancer(CRC)is the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide.The leading risk factors for CRC include male gender,age over 50,family history,obesity,tobacco smoking,alco-hol consumption,and unhealthy diet.CRC screening methods vary considerably between countries and depend on incidence,economic resources and healthcare structure.Important aspects of screening include adherence,which can vary signi-ficantly across ethnic and socioeconomic groups.Basic concepts of CRC screening include pre-stratification of patients by identifying risk factors and then using fecal immunochemical test or guaiac-based fecal occult blood test and/or colono-scopy or radiologic imaging techniques.Technological capabilities for CRC scree-ning are rapidly evolving and include stool DNA test,liquid biopsy,virtual colo-nography,and the use of artificial intelligence.A CRC prevention strategy should be comprehensive and include active patient education along with targeted imple-mentation of screening.展开更多
基金supported by grants from Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions(2023SHIBS0002)the National Key Research and Development Program of China(2023YFF1203505)+5 种基金the National Key R&D Program of China(2024YFC2417900)Shenzhen Municipal Science and Technology Innovation Council(202110293000007)Shenzhen Science and Technology Program(KJZD20230923114909019)the National Key R&D Program of China(2018YFA0801006)the National Natural Science Foundation of China(31771618)Guangdong Natural Science Foundation(2022A1515011878).
文摘Zebrafish larvae are useful for identifying chemicals against lateral line(LL)hair cell(HC)damage and this type of chemical screen mainly focuses on searching for protectors against cell death.To expand the candidate pool of HC protectors,a self-built acoustic escape response(AER)-detecting system was developed to apply both low-frequency near-field sound transmission and AER image acquisition/processing modules.The device quickly confirmed the changed LL HC functions caused by most known ototoxins,protectors,and neural transmission modifiers,or knockdown of LL HC-expressing genes.With ten devices wired in tandem,five‘hit’chemicals were identified from 124 cyclin-dependent kinase inhibitors to partially restore cisplatin-damaged AER in less than a day.AS2863619,ribociclib,and SU9516 among the hits,protected the HCs in the mouse cochlea.Therefore,using free-swimming larval zebrafish,the self-made AER-detecting device can efficiently identify compounds that are protective against HC damage,including cell death and loss-of-function.
基金financially supported by the National Natural Science Foundation of China (62464010)Spring City Plan-Special Program for Young Talents (K202005007)+3 种基金the Yunnan Talents Support Plan for Yong Talents (XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects (202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher Educationthe Frontier Research Team of Kunming University 2023
文摘Silicon-air(Si-air)batteries have received significant attention owing to their high theoretical energy density and safety profile.However,the actual energy density of the Si-air battery remains significantly lower than the theoretical value,primarily due to corrosion issues and passivation.This study used various metal-organic framework(MOF)materials,such as MIL-53(Al),MIL-88(Fe),and MIL-101(Cr),to modify Si anodes.The MOFs were fabricated to have different morphologies,particle sizes,and pore sizes by altering their central metal nodes and ligands.This approach aimed to modulate the adsorption behavior of H_(2)O,SiO_(2),and OH^(−),thereby mitigating corrosion and passivation reactions.Under a constant current of 150μA,Si-air batteries with MIL-53(Al)@Si,MIL-88(Fe)@Si,and MIL-101(Cr)@Si as anodes demonstrated lifetimes of 293,412,and 336 h,respectively,surpassing the 276 h observed with pristine silicon anodes.Among these composite anodes,MIL-88(Fe)@Si displayed the best performance due to its superior hydrophobicity and optimal pore size,which enhance OH^(−)migration.This study offers a promising strategy for enhancing Si-air battery performance by developing an anodic protective layer with selective screening properties.
基金funded by the National Natural Science Foundation of China(Nos.81473537,81773690,21673219)
文摘Magnetic nanoparticles(MNPs) are widely used for the immobilization of enzyme owing to the unique properties such as good biocompatibility and rapid separation. Herein, we used Fe_3O_4 magnetic nanoparticles(Fe_3O_4 MNPs) as the carrier core with(3-aminopropyl)triethoxysilane(APTES)modification by our approach, in which a-glucosidase was stereoscopically immobilized on the surface of Fe_3O_4 MNPs via covalent binding. The result of immobilization was characterized by scanning electron microscope(SEM) and fourier transform-infrared spectroscopy(FT-IR). Then we optimized some key parameters of the immobilization reaction, including the ratio of MNPs to enzyme, GA concentration,crosslinking time and immobilization time. Moreover, under the optimal conditions, pH tolerance,thermo stability and reusability of the immobilized enzyme were investigated and compared with the free one. In order to evaluate the change of the affinity of the enzyme to its specific substrate after immobilization, the Michaelis-Menten constant(K_m) was also studied. Finally, the immobilized α-glucosidase combining with high performance liquid chromatography-tandem mass spectrometry technique(HPLC-MS/MS) was applied to screen and identify eight inhibitors from Polygonum cuspidatum extract. These results indicated that the established method had the broad prospects for biotechnological applications.
文摘Colorectal cancer(CRC)is a prevalent malignancy worldwide,posing a significant public health concern.Mounting evidence has confirmed that timely early screening facilitates the detection of incipient CRC,thereby enhancing patient prognosis.Obviously,non-participation of asymptomatic individuals in screening programs hampers early diagnosis and may adversely affect long-term outcomes for CRC patients.In this letter,we provide a comprehensive overview of the current status of early screening practices,while also thoroughly examine the dilemmas and potential solutions associated with early screening for CRC.In response to these issues,we proffer a set of recommendations directed at governmental authorities and the general public,which focus on augmenting financial investment,establishing standardized screening protocols,advancing technological capabilities,and bolstering public awareness campaigns.The importance of collaborative efforts from various stakeholders cannot be overstated in the quest to enhance early detection rates and alleviate the societal burden of CRC.
文摘A multifunctional integrated microfluidic biochip device was engineered to estimate the activity-toxicity and composition principle of medicine in a cell model in vitro. This biochip could be used for disease cells and healthy cells in two modules of "Yin-Yang" on the same chip for detecting the medicine efficacytoxicity simultaneously, as well as adjust different gradient ratios of concentration through the Christmas tree structure in both "Yin-Yang" modules autonomously for detecting the best compatibility of medicine in maximum efficacy and minimal toxicity. In the applicability experiment, the best concentration of three chemical compounds including dinatin, diosmetin and cisplatin, were detected using the biochip and traditional 96-cell plate. Biochip assays showed perfect positive correlation compared with the results of traditional 96-cell plate, in addition presented advantages as less detection time and much lower price than the traditional 96-cell plate, which indicated the biochip is both convenient and feasible.Thus, the novel microfluidic chip-based multifunctional integrated system congregated the virtues of high throughput, rapid, sensitive, specific, cost-effective, and similar to the physical environment of the human body, which was especially suitable for the medicine efficacy-toxicity and compatibility evaluation.
文摘Xanthomonas oryzae pv.oryzae(Xoo) is an important rice pathogen.This is a vascular pathogen entering the plant via the hydathodes causing rice bacterial blight.It has been known that most regulation of pathogenicity factor F(RpfF) genes in Xanthomonas regulates virulence in response to the diffusible signal factor(DSF).The RpfF recognized as an attractive drug target in bacterial rice blight disease.In this study,we performed the gene-gene interaction of RpfF and pathway functional analysis.3 D structure of RpfF protein was predicted using a homology modelling tool Swiss-Model and refined by molecular dynamics(MD) simulation.The refined model protein was predicted structural assessment using various tools such as PROCHECK,ERRAT,and VERIFY-3 D.We have collected 2 500 rifampicin analogues from Zinc Database by virtual screening.The screened compounds were docked into the active site of the RpfF protein using AutoDock Vina in PyRx Virtual Screening Tool.Furthermore,docking result and in silico ADMET analysis described that the compounds ZINC03056414,ZINC03205310,ZINC08673779,ZINC09100848,ZINC09729566,ZINC11415953,ZINC12810788,ZINC24989313,ZINC27441787 and ZINC32739565 have best binding energies and less toxicity than reference compound.This study revealed that the active site residues such as HIS-118,HIS-147,THR-148,ARG-179,ASP-207,ARG-240 and THR-244 are key roles in the pathogenicity.It could be beneficial in the design of small molecule therapeutics or the treatment of rice bacterial blight disease.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82373835,82304437,and 82173781)Regional Joint Fund Project of Guangdong Basic and Applied Basic Research Fund,China(Grant Nos.:2023A1515110417 and 2023A1515140131)+2 种基金Regional Joint Fund-Key Project of Guangdong Basic and Applied Basic Research Fund,China(Grant No.:2020B1515120033)the Key Field Projects of General Universities in Guangdong Province,China(Grant Nos.:2020ZDZX2057 and 2022ZDZX2056)Medical Scientific Research Foundation of Guangdong Province of China(Grant No.:A2022061).
文摘Natural antimicrobial peptides(AMPs)are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens.They have found extensive applications in the fields of medicine,food,and agriculture.However,efficiently screening AMPs from natural sources poses several challenges,including low efficiency and high antibiotic resistance.This review focuses on the action mechanisms of AMPs,both through membrane and non-membrane routes.We thoroughly examine various highly efficient AMP screening methods,including whole-bacterial adsorption binding,cell membrane chromatography(CMC),phospholipid membrane chromatography binding,membranemediated capillary electrophoresis(CE),colorimetric assays,thin layer chromatography(TLC),fluorescence-based screening,genetic sequencing-based analysis,computational mining of AMP databases,and virtual screening methods.Additionally,we discuss potential developmental applications for enhancing the efficiency of AMP discovery.This review provides a comprehensive framework for identifying AMPs within complex natural product systems.
基金This study was funded by Key R&D Program of China(Grant number:2017YFC1310500)Shanghai Municipal Health Commission project(Grant number:202040500)Shanghai public health projects(Grant number:GWV-9.2)。
文摘Background Early screening of cognitive function is critical to dementia treatment and care.However,traditional tests require face-to-face administration and are often limited by implementation costs and biases.Aims This study aimed to assess whether the Thoven Cognitive Self-Assessment(TCSA),a novel,innovative two-step touchscreen-based cognition assessment tool,could identify early cognitive impairment due to dementia in older adults.Methods The TCSA was administered to 61 healthy controls(HCs),46 participants with mild cognitive impairment(MCI)and 44 participants diagnosed with dementia recruited from Shanghai.Two outcome measures were generated from the TCSA test:the TCSA_(primary task)score and the TCSA_(secondary task)score.Results The total average scores in the control group for the TCSA_(primary task)and TCSA_(secondary task)were significantly higher than those in the MCI and dementia groups(TCSA_(primary task):HCs vs MCI group vs dementia group,8.58±1.76 vs 5.40±2.67 vs 2.74±2.11,F=75.40,p<0.001;TCSA_(secondary task):HCs vs MCI group vs dementia group,23.02±3.31 vs 17.95±4.93 vs 11.93±5.50,F=76.46,p<0.001).Moreover,receiver operating characteristic analysis showed that a score below 7.5 for the TCSA_(primary task)and a score below 22.5 for the TCSA_(secondary task)were indicators of MCI.Conclusions The TCSA appears to be efficacious for the detection of cognitive impairment in older adults.It demonstrates the potential for large-scale cognition screening in community service settings.
基金the National Key R&D Program of China(No.2021YFA0715900)the National Natural Science Foundation of China(No.41831279)+2 种基金the Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks(No.ZDSYS20220606100604008)the Guangdong Province Bureau of Education(No.2020KCXTD006)the Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control(No.2023B1212060002).
文摘Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development,an environmental concern that increasingly limits its utilization.This study further improves the Molybdenum Blue(MB)colorimetric method to allow for faster screening with more stable reagents.More importantly,a portable three-channel colorimeter is developed for screening iAs relative to the WHO drinking water guideline value(10μg/L).Adding the reducing reagents in sequence not only prolongs the storage time to>7 days,but also accelerates the color development time to 6 min in conjunction with lowering the H_(2)SO_(4) concentration in chromogenic reagents.The optimal pH ranges from 1.2 to 1.3 and is achieved by acidifying groundwater to 1%(V/V)HCl.With detection limits of 3.7μg/L for inorganic arsenate(iAs(V))and 3.8μg/L for inorganic arsenite(iAs(Ⅲ)),testing groundwater with-10μg/L of As has a precision<20%.The method works well for a range of phosphate concentrations of 48-950μg/L(0.5-10μmol/L).Concentrations of total_iAs(6-300μg/L),iAs(V)(6-230μg/L)and iAs(Ⅲ)(0-170μg/L)for 14 groundwater samples from Yinchuan Plain,Pearl River Delta,and Jianghan Plain,are in excellent agreements(linear regression slope:0.969-1.029)with the benchmark methods.The improved chemistry here lays the foundation for the MB colorimetric method to become a commercially viable screening tool,with further engineering and design improvement of the colorimeter.
基金the National Key Research Program of China under granted No.92164201National Natural Science Foundation of China for Distinguished Young Scholars No.62325403+2 种基金Natural Science Foundation of Jiangsu Province(BK20230498)Jiangsu Funding Program for Excellent Postdoctoral Talent(2024ZB427)the National Natural Science Foundation of China(62304147).
文摘Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration.
基金supported by the National Key Research and Development Program of China(No.2019YFC1804501)the National Natural Science Foundation of China(Nos.22036007 and 22122611)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2020ME228)the Introduction and Cultivation Plan for Young Innovative Talents of Colleges and Universities.
文摘This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons(PAHs)and their derivatives in one Chinese petroleum refinery facility.It was found that,following with high concentrations of 16 EPA PAHs(∑Parent-PAHs)in smelting subarea of studied petroleum refinery facility,total derivatives of PAHs[named as XPAHs,including nitro PAHs(NPAHs),chlorinated PAHs(Cl-PAHs),and brominated PAHs(Br-PAHs)]in gas(mean=1.57×10^(4)ng/m^(3)),total suspended particulate(TSP)(mean=4.33×10^(3) ng/m^(3))and soil(mean=4.37×10^(3) ng/g)in this subarea had 1.76-6.19 times higher levels than those from other subareas of this facility,surrounding residential areas and reference areas,indicating that petroleum refining processes would lead apparent derivation of PAHs.Especially,compared with those in residential and reference areas,gas samples in the petrochemical areas had higher∑NPAH/∑PAHs(mean=2.18),but lower∑Cl-PAH/∑PAHs(mean=1.43×10^(-1))and∑Br-PAH/∑PAHs ratios(mean=7.49×10^(-2)),indicating the richer nitrification of PAHs than chlorination during petrochemical process.The occupational exposure to PAHs and XPAHs in this petroleum refinery facility were 24-343 times higher than non-occupational exposure,and the ILCR(1.04×10^(-4))for petrochemical workers was considered to be potential high risk.Furthermore,one expanded high-resolution screening through GC Orbitrap/MS was performed for soils from petrochemical area,and another 35 PAHs were found,including alkyl-PAHs,phenyl-PAHs and other species,indicat-ing that profiles and risks of PAHs analogs in petrochemical areas deserve further expanded investigation.
文摘Liver transplantation(LT)is the definitive treatment for end-stage liver disease,acute liver failure,and liver cancer.Although advancements in surgical techniques,postoperative care,and immunosuppressive therapies have significantly improved outcomes,the long-term use of immunosuppression has increased the risk of complications,including infections,cardiovascular disease,and cancer.Among these,de novo malignancies(DNMs)are a major concern,accounting for 20%-25%of deaths in LT recipients surviving beyond the early post-transplant period.Non-melanoma skin cancers,particularly squamous cell carcinoma are the most prevalent DNMs.Other significant malignancies include Kaposi's sarcoma,post-transplant lymphoproliferative disorders,and various solid organ cancers,including head and neck cancers.Compared to the general population,LT patients face a twofold increase in solid organ malignancies and a 30-fold increase in lymphoproliferative disorders.Risk factors for DNM include chronic immunosuppression,alcohol or tobacco use,viral infections,and underlying liver disease.Emerging evidence emphasizes the importance of tailored cancer screening and prevention strategies,including regular dermatological examinations,targeted screenings for high-risk cancers,and patient education on lifestyle modifications.Early detection through enhanced surveillance protocols has been shown to improve outcomes.Management of DNMs involves a combination of standard oncological therapies and adjustments to immunosuppressive regimens,with promising results from the use of mTOR inhibitors in select patients.The review highlights the critical need for ongoing research to refine risk stratification,optimize screening protocols,and improve treatment approaches to mitigate the burden of DNMs in LT recipients.By implementing personalized preventive and therapeutic strategies,we can enhance long-term outcomes and quality of life for this vulnerable population.
基金supported by the National Natural Science Foundation of China(Nos.82173746 and U23A20530)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission)。
文摘Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.
文摘Helicobacter pylori(H.pylori)infection induces pathological changes via chronic inflammation and virulence factors,thereby increasing the risk of gastric cancer development.Compared with invasive examination methods,H.pylori-related serum indicators are cost-effective and valuable for the early detection of gastric cancer(GC);however,large-scale clinical validation and sufficient understanding of the specific molecular mechanisms involved are lacking.Therefore,a comprehensive review and analysis of recent advances in this field is necessary.In this review,we systematically analyze the relationship between H.pylori and GC and discuss the application of new molecular biomarkers in GC screening.We also summarize the screening potential and application of anti-H.pylori immunoglobulin G and virulence factor-related serum antibodies for identifying GC risk.These indicators provide early warning of infection and enhance screening accuracy.Additionally,we discuss the potential combination of multiple screening indicators for the comprehensive analysis and development of emerging testing methods to improve the accuracy and efficiency of GC screening.Although this review may lack sufficient evidence due to limitations in existing studies,including small sample sizes,regional variations,and inconsistent testing methods,it contributes to advancing personalized precision medicine in high-risk populations and developing GC screening strategies.
基金the Antarctic Institute of Uruguay Research Projects 2012-2014, Programa para el Desarrollo de las Ciencias Básicas (PEDECIBA)the National Agency for Innovation and Investigation (ANII) INI_X_2012_1_4201 for their partial financial support
文摘A metagenomic fosmid library of approximately 52 000 clones was constructed to identify functional genes encoding cold-adapted enzymes. Metagenomic DNA was extracted from a sample of glacial meltwater, collected on the Antarctic Peninsula during the ANTARKOS XXIX Expedition during the austral summer of 2012-2013. Each clone contained an insert of about 35-40 kb, so the library represented almost 2 Gb of genetic information from metagenomic DNA. Activity-driven screening was used to detect the cold-adapted functions expressed by the library. Fifty lipase/esterase and two cellulase-producing clones were isolated, and two clones able to grow on Avicel as the sole carbon source. Interestingly, three clones formed a brown precipitate in the presence of manganese (II). Accumulation of manganese oxides was determined with a leucoberbelin blue assay, indicating that these three clones had manganese-oxidizing activity. To the best of our knowledge, this is the first report of a manganese oxidase activity detected with a functional metagenomic strategy.
文摘The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with improved catalytic performance.Herein,various O‐functional MXenes were investigated as NRR catalysts by a combination of density functional theory calculations and least absolute shrinkage and selection operator(LASSO)regression.Nb_(3)C_(2)O_(X) has been regarded as a promising catalyst for the NRR because of its stability,activity,and selectivity.The poten‐tial‐determining step is*NH_(2) hydrogenation to*NH3 with a limiting potential of-0.45 V.Further‐more,via LASSO regression,the descriptors and equations fitting the relationship between the properties of O‐functional MXenes and NRR activity have been proposed.This work not only pro‐vides a rational design strategy for catalysts but also provides machine learning data for further investigation.
基金financial support from the National Key Research and Development Program of China(2021YFB 3501501)the National Natural Science Foundation of China(No.22225803,22038001,22108007 and 22278011)+1 种基金Beijing Natural Science Foundation(No.Z230023)Beijing Science and Technology Commission(No.Z211100004321001).
文摘The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction.
文摘Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.
基金financially supported by Tianjin Municipal Natural Science Foundation (Key Program No.12JCZDJC22000)Ministry of Science and Technology of China (Nos.2010CB126102,2011BAE06B05)
文摘Phosphonates have been frequently used as suitable isosteric and isoelectronic replacements for biologically important phosphates in the development of drugs or drug candidates because of their stability toward the action of phosphatases and other enzymes.In this paper,12 mono-phosphonate inositol compounds were prepared with phosphonate instead of phosphate by two kinds of strategies,nucleophilic substitution and Arbuzov rearrangement,respectively.All compounds were evaluated in vitro for their activity against non-small cell lung cancer(NSCLC) cell line A549.Two compounds(3ac and 3bb) exhibited good antitumor activity at 10 mg/mL.
文摘Colorectal cancer(CRC)is the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide.The leading risk factors for CRC include male gender,age over 50,family history,obesity,tobacco smoking,alco-hol consumption,and unhealthy diet.CRC screening methods vary considerably between countries and depend on incidence,economic resources and healthcare structure.Important aspects of screening include adherence,which can vary signi-ficantly across ethnic and socioeconomic groups.Basic concepts of CRC screening include pre-stratification of patients by identifying risk factors and then using fecal immunochemical test or guaiac-based fecal occult blood test and/or colono-scopy or radiologic imaging techniques.Technological capabilities for CRC scree-ning are rapidly evolving and include stool DNA test,liquid biopsy,virtual colo-nography,and the use of artificial intelligence.A CRC prevention strategy should be comprehensive and include active patient education along with targeted imple-mentation of screening.