The article presents the data of the assessment of the physical development and functional state of highly qualifiedgymnasts engaged in rhythmic gymnastics. It was found that high-skilled gymnasts have heterogeneity o...The article presents the data of the assessment of the physical development and functional state of highly qualifiedgymnasts engaged in rhythmic gymnastics. It was found that high-skilled gymnasts have heterogeneity ofsomatotypes determined according to the B. Heath-J. Carter scheme and heterogeneity of types of autonomousnervous regulation of heart rate variability, systolic, diastolic blood pressure and respiration, determined on thespiroarteriorhythmocardiograph device. Highly qualified gymnasts have vago- and normotonic types of regulationof heart rate variability;normal-sympathetic-and hypersympathicotonic types of regulation of the variability ofsystolic blood pressure and diastolic blood pressure, vagotonic type of regulation of the variability of the respiratoryrhythm. Statistically significant differences gymnasts, successful in the medal standings at the internationalcompetitions and gymnasts participating, but not in high prizes in competitions, consist in the ability to resistfatigue while performing strenuous mental work (differences were revealed in 10-letter “Mental performance” at aconstant speed (p > 0.0001), and 3-letter test (p > 0.001)), data stabilometric test “Target” indicator “Time stabilityon the left foot” (R > 0.039) with the advantage of a high performing gymnasts artists. Fleshed out the possibility ofusing the parameters of the morphofunctional state of gymnasts in training for the qualitative evaluation of thephysical development of gymnasts, evaluation set their sports uniforms indicated the possibility of developing thereference parameters of the morphofunctional status of gymnasts and recommendations on the frequency of thesurvey of morphological and functional status of gymnasts involved in rhythmic gymnastics.展开更多
This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batterie...This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batteries in ICEVs are investigated.Then,an adaptive functional state model is proposed to represent battery aging throughout the entire battery service life.A battery protection scheme is developed,including over-discharge and graded over-current protection to improve battery safety.A model-based energy management strategy is synthesized to comprehensively optimize fuel economy,battery life preservation,and vehicle performance.The performance of the proposed scheme was examined under comprehensive test scenarios based on field and bench tests.The results show that the proposed energy management algorithm can effectively improve fuel economy.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,ne...Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,neuropsychiatric sequelae,and changes in brain function remain unknown.This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19(8 males and 11 females,aged 54.2±8.7 years).Fatigue and myalgia were persistent symptoms at the 1-year follow-up.The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls(7 males and 18 females,aged 50.5±11.6 years),COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation(ALFF)values in the left precentral gyrus,middle frontal gyrus,inferior frontal gyrus of operculum,inferior frontal gyrus of triangle,insula,hippocampus,parahippocampal gyrus,fusiform gyrus,postcentral gyrus,inferior parietal angular gyrus,supramarginal gyrus,angular gyrus,thalamus,middle temporal gyrus,inferior temporal gyrus,caudate,and putamen.ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores,and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization.The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors.This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae.This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University(approval No.2020 S004)on March 19,2020.展开更多
Objective: in this paper, the functional connectivity of the resting state brain in first-episode schizophrenia patients with auditory hallucinations was studied. Methods: according to the DDSM -IV schizophrenia diagn...Objective: in this paper, the functional connectivity of the resting state brain in first-episode schizophrenia patients with auditory hallucinations was studied. Methods: according to the DDSM -IV schizophrenia diagnostic criteria, 94 patients with first schizophrenic auditory hallucinations and 94 healthy patients were selected as control. All subjects underwent clinical evaluation and resting-state functional magnetic resonance (FMRI) scans, and the differences between the two groups were analyzed and compared. Results: compared to control group, patients with first-episode schizophrenia auditory hallucination itself left superior temporal gyrus, the ipsilateral medial prefrontal function and connection of side guide vane fall further, at the same time, to the left side of the patients with first-episode schizophrenia hallucinations Heschl back with ipsilateral medial prefrontal function and connection of the contralateral temporal gyrus, showed a trend of decline, in addition, for the right of HG, it was also functionally connected to the left middle temporal gyrus and showed a declining trend. Conclusion: in the early stages of schizophrenia, there are serious abnormal connectivity between different brain regions, especially between the two sides of the brain, and there is also an abnormal pattern of "disconnection", which indicates that there are serious abnormalities in the integration function of the brain in the first episode of schizophrenia.展开更多
White matter(WM)comprises approximately half of the human brain volume and is primarily composed of bundles of axons and glia.The axons conduct nerve impulses between gray matter(GM)to support information transmission...White matter(WM)comprises approximately half of the human brain volume and is primarily composed of bundles of axons and glia.The axons conduct nerve impulses between gray matter(GM)to support information transmission and coordination within brain networks or circuits.Despite the overwhelming emphasis of human brain imaging on GM,few would deny the importance of the functional contributions of WM to human cognition and behavior.For in vivo brain studies,diffusion magnetic resonance imaging(MRI)has been widely used to delineate WM fibers and measure their microstructural properties,but diffusion MRI reveals little about functional activity.For a long time,we have lacked an in vivo way to quantify functional metrics of wM.In contrast to the widespread application of functional MRI(fMRI)based on blood oxygenation-level-dependent(BOLD)signals to assess GM functions[1],BOLD effects in WM have been regarded as noise or nuisance variables in most neuroimaging studies.展开更多
Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a ...Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.展开更多
Regional homogeneity(ReHo)and the amplitude of low-frequency fluctuation(ALFF)are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging(RS-fMRI)dat...Regional homogeneity(ReHo)and the amplitude of low-frequency fluctuation(ALFF)are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging(RS-fMRI)data.Whether they can complementarily reveal brain regional functional abnormalities in attention-deficit/hyperactivity disorder(ADHD)remains unknown.In this study,we applied ReHo and ALFF to 23 medication-na ve boys diagnosed with ADHD and 25 age-matched healthy male controls using whole-brain voxel-wise analysis.Correlation analyses were conducted in the ADHD group to investigate the relationship between the regional spontaneous brain activity measured by the two approaches and the clinical symptoms of ADHD.We found that the ReHo method showed widely-distributed differences between the two groups in the fronto-cingulo-occipitocerebellar circuitry,while the ALFF method showed a difference only in the right occipital area.When a larger smoothing kernel and a more lenient threshold were used for ALFF,more overlapped regions were found between ALFF and ReHo,and ALFF even found some new regions with group differences.The ADHD symptom scores were correlated with the ReHo values in the right cerebellum,dorsal anterior cingulate cortex and left lingual gyrus in the ADHD group,while no correlation was detected between ALFF and ADHD symptoms.In conclusion,ReHo may be more sensitive to regional abnormalities,at least in boys with ADHD,than ALFF.And ALFF may be complementary to ReHo in measuring local spontaneous activity.Combination of the two may yield a more comprehensive pathophy-siological framework for ADHD.展开更多
This paper introduces a new concept of "State Representation Methodology (SRM)" which is a kind of bridge condition assessment method for structural health monitoring system (SHM). There are many methods for sys...This paper introduces a new concept of "State Representation Methodology (SRM)" which is a kind of bridge condition assessment method for structural health monitoring system (SHM). There are many methods for system identification from the simplicity comparison of damage index to the complicated statistical pattern recognition algorithms in SHM. In these methods, modal analysis and parameters identification or many defined indices are common-used for extracting the dynamic or static characteristics of a system. However, there is a common problem: due to the complexity of a large size system with high-order nonlinear characteristics and severe environment interference, it is impossible to extract and quantify exactly these modal parameters or system parameters or indices as the feature vectors of a system in damage detection in an easy way. The SRM considered a more general theory for the non-parametric description of system state.展开更多
The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical prop...The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.展开更多
In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated ...In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated assembly of global stiffness matrix and repeated inverse operations of the matrix caused by constant changes of structure topology. A new criterion of degenerate of the structure into mechanism is introduced. The calculation examples are satisfactory.展开更多
Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the react...Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the reactants, intermediates, products and transition states of the triplet ground potential energy surfaces of [Ni, O, C2, H4] were obtained at the B3LYP/6-311++G(d,p) levels in C,H,O atoms and B3LYP/ Lanl2 dz in Ni atom. It was found through our calculations that the decabonylation of acetaldehyde contains four steps including encounter complexation, C-C activation, aldehyde H-shift and nonreactive dissociation. The results revealed that C-C activation induced by Ni L2(L=SO3CH3) led to the decarbonylation of acetaldehyde.展开更多
The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. ...The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. The calculation of the local density of states shows that new states will emerge between the resonant Wannier-Stark states as a result of the intervention of time-dependent impurity potential, and the increase in electric field strength of impurity will result in the growing of the number of new states between the gaps of neighbouring Stark ladders.展开更多
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the C2Hx(x = 4~6) species adsorption on the Fe(110) surface. The adsorption energy and equilibrium geometry o...The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the C2Hx(x = 4~6) species adsorption on the Fe(110) surface. The adsorption energy and equilibrium geometry of the species C2Hx(x = 4~6) on four possible sites(top,hcp,SB and LB) on the Fe(110) surface were predicted and compared. Mulliken charges and density of states analysis of the most stable site have been discussed. It is found that the species of C2H6 and C2H5 are adsorbed strongly on the Fe(110) surface with calculated adsorption energy of -80.24 and -178.89 kJ·mol^-1 at the Fe-LB(long-bridge) ,respectively. However,the C2H4 is adsorbed strongly on the Fe(110) surface with calculated adsorption energies of -114.96 kJ·mol^-1 at the top. The results indicate that the charge transferring process can be completed by chemisorption between Fe(110) surface and the species. Moreover,the chemical bands can be formed by chemisorptions between the Fe(110) surface and the species,too.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
Objective Using resting-state functional magnetic resonance imaging (rs-fMRI),we explored the changes in dynamic functional network connections (dFNC) in the brains of patients with first-episode schizophrenia (SZ)and...Objective Using resting-state functional magnetic resonance imaging (rs-fMRI),we explored the changes in dynamic functional network connections (dFNC) in the brains of patients with first-episode schizophrenia (SZ)and evaluated the potential clinical value of dFNC changes in combination with a machine learning model.展开更多
The gas phase reaction mechanism of Cl2 + I2 = 2ICl has been theoretically investigated by DFF method at the B3LYP/3-21 G* level. Transition states of three reaction channels were consequently given. The results ind...The gas phase reaction mechanism of Cl2 + I2 = 2ICl has been theoretically investigated by DFF method at the B3LYP/3-21 G* level. Transition states of three reaction channels were consequently given. The results indicate that in the title reaction the least activation energy of bi-molecular reaction was smaller than the dissociation energies of I2 and Cl2, and thus the reaction mechanism was the course of molecule-molecule interaction at low reaction rate. If other factors such as illumination were taken into account, I2 could dissociate into I atoms and then react with Cl2, or Cl2 dissociates into CI atoms and reacts with I2. These were photochemical reactions with high reaction speed. The theoretical results were further validated with absorbance measurement at 516 nm.展开更多
The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is establish...The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is established and then applied to the Tangshan earthquake data, with some conclusions drawn.展开更多
The structural and elastic properties of the recently-discovered wⅡ- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials.The elastic constants show that wⅡ-...The structural and elastic properties of the recently-discovered wⅡ- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials.The elastic constants show that wⅡ- and δ-Si3N4 are mechanically stable in the pressure ranges of 0-50 GPa and 40-50 GPa,respectively.The α→wⅡ phase transition can be observed at 18.6 GPa and 300 K.The β→δ phase transformation occurs at pressures of 29.6,32.1,35.9,39.6,41.8,and 44.1 GPa when the temperatures are100,200,300,400,500,and 600 K,respectively.The results show that the interactions among the N-2s,Si-3s,3p bands(lower valence band) and the Si-3p,N-2p bands(upper valence band) play an important role in the stabilities of the wⅡ and S phases.Moreover,several thermodynamic parameters(thermal expansion,free energy,bulk modulus and heat capacity) of δ-Si3N4 are also obtained.Some interesting features are found in these properties.δ-Si3N4 is predicted to be a negative thermal expansion material.The adiabatic bulk modulus decreases with applied pressure,but a majority of materials show the opposite trend.Further experimental investigations with higher precisions may be required to determine the fundamental properties of wⅡ- andδ-Si3N4.展开更多
Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β...Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β and have simple calculation forms. Finally, the validity of the explicit iteration algorithm is illustrated through two examples by MATLAB programming.展开更多
文摘The article presents the data of the assessment of the physical development and functional state of highly qualifiedgymnasts engaged in rhythmic gymnastics. It was found that high-skilled gymnasts have heterogeneity ofsomatotypes determined according to the B. Heath-J. Carter scheme and heterogeneity of types of autonomousnervous regulation of heart rate variability, systolic, diastolic blood pressure and respiration, determined on thespiroarteriorhythmocardiograph device. Highly qualified gymnasts have vago- and normotonic types of regulationof heart rate variability;normal-sympathetic-and hypersympathicotonic types of regulation of the variability ofsystolic blood pressure and diastolic blood pressure, vagotonic type of regulation of the variability of the respiratoryrhythm. Statistically significant differences gymnasts, successful in the medal standings at the internationalcompetitions and gymnasts participating, but not in high prizes in competitions, consist in the ability to resistfatigue while performing strenuous mental work (differences were revealed in 10-letter “Mental performance” at aconstant speed (p > 0.0001), and 3-letter test (p > 0.001)), data stabilometric test “Target” indicator “Time stabilityon the left foot” (R > 0.039) with the advantage of a high performing gymnasts artists. Fleshed out the possibility ofusing the parameters of the morphofunctional state of gymnasts in training for the qualitative evaluation of thephysical development of gymnasts, evaluation set their sports uniforms indicated the possibility of developing thereference parameters of the morphofunctional status of gymnasts and recommendations on the frequency of thesurvey of morphological and functional status of gymnasts involved in rhythmic gymnastics.
基金supported by National Natural Science Foundation of China(Grant No.52002209)Beijing Nova Program,and the State Key Laboratory of Automotive Safety and Energy(Grant No.KFY2210).
文摘This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batteries in ICEVs are investigated.Then,an adaptive functional state model is proposed to represent battery aging throughout the entire battery service life.A battery protection scheme is developed,including over-discharge and graded over-current protection to improve battery safety.A model-based energy management strategy is synthesized to comprehensively optimize fuel economy,battery life preservation,and vehicle performance.The performance of the proposed scheme was examined under comprehensive test scenarios based on field and bench tests.The results show that the proposed energy management algorithm can effectively improve fuel economy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported by Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of China,No.2020SK3006(to JL)Clinical Research Center for Medical Imaging in Hunan Province of China,No.2020SK4001(to JL)the Innovative Major Emergency Project Funding against the New Coronavirus Pneumonia in Hunan Province of China,No.2020SK3014(to JYL)。
文摘Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,neuropsychiatric sequelae,and changes in brain function remain unknown.This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19(8 males and 11 females,aged 54.2±8.7 years).Fatigue and myalgia were persistent symptoms at the 1-year follow-up.The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls(7 males and 18 females,aged 50.5±11.6 years),COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation(ALFF)values in the left precentral gyrus,middle frontal gyrus,inferior frontal gyrus of operculum,inferior frontal gyrus of triangle,insula,hippocampus,parahippocampal gyrus,fusiform gyrus,postcentral gyrus,inferior parietal angular gyrus,supramarginal gyrus,angular gyrus,thalamus,middle temporal gyrus,inferior temporal gyrus,caudate,and putamen.ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores,and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization.The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors.This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae.This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University(approval No.2020 S004)on March 19,2020.
文摘Objective: in this paper, the functional connectivity of the resting state brain in first-episode schizophrenia patients with auditory hallucinations was studied. Methods: according to the DDSM -IV schizophrenia diagnostic criteria, 94 patients with first schizophrenic auditory hallucinations and 94 healthy patients were selected as control. All subjects underwent clinical evaluation and resting-state functional magnetic resonance (FMRI) scans, and the differences between the two groups were analyzed and compared. Results: compared to control group, patients with first-episode schizophrenia auditory hallucination itself left superior temporal gyrus, the ipsilateral medial prefrontal function and connection of side guide vane fall further, at the same time, to the left side of the patients with first-episode schizophrenia hallucinations Heschl back with ipsilateral medial prefrontal function and connection of the contralateral temporal gyrus, showed a trend of decline, in addition, for the right of HG, it was also functionally connected to the left middle temporal gyrus and showed a declining trend. Conclusion: in the early stages of schizophrenia, there are serious abnormal connectivity between different brain regions, especially between the two sides of the brain, and there is also an abnormal pattern of "disconnection", which indicates that there are serious abnormalities in the integration function of the brain in the first episode of schizophrenia.
基金supported by the National Natural Science Foundation of China(82371507 and 82090034)Outstanding Youth Fund for Universities in Anhui Province(2024AH020004)+5 种基金the collaborative innovation project between universities and Hefei Comprehensive National Science Center(GXXT-2022-028)the Hefei Comprehensive National Science Center Hefei Brain Project,the 2021 Anhui Province Key R&D Project:Population Health Special Project(202104j07020033)major project of Research Fund of Anhui Institute of Translational Medicine in 2020(2020zhyx A04)the Anhui Province Clinical Medical Research Transformation Special Project(202204295107020006 and 202204295107020028)National Institutes of Health grant(R01 NS113832 and R01 NS129855)National Research and Engineering Council Canada,Discovery Grant。
文摘White matter(WM)comprises approximately half of the human brain volume and is primarily composed of bundles of axons and glia.The axons conduct nerve impulses between gray matter(GM)to support information transmission and coordination within brain networks or circuits.Despite the overwhelming emphasis of human brain imaging on GM,few would deny the importance of the functional contributions of WM to human cognition and behavior.For in vivo brain studies,diffusion magnetic resonance imaging(MRI)has been widely used to delineate WM fibers and measure their microstructural properties,but diffusion MRI reveals little about functional activity.For a long time,we have lacked an in vivo way to quantify functional metrics of wM.In contrast to the widespread application of functional MRI(fMRI)based on blood oxygenation-level-dependent(BOLD)signals to assess GM functions[1],BOLD effects in WM have been regarded as noise or nuisance variables in most neuroimaging studies.
基金supported by the National Natural Science Foundation of China(62073094)the Fundamental Research Funds for the Central Universities(3072024GH0404)
文摘Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.
基金supported by the Commonwealth Sciences Foundation, Ministry of Health, China (200802073)the National Basic Research Development Program, Ministry of Science and Technology, China (2007BAI17B03)+1 种基金the National Natural Sciences Foundation of China (30970802, 81000593, 81020108022, 81271652)the Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning
文摘Regional homogeneity(ReHo)and the amplitude of low-frequency fluctuation(ALFF)are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging(RS-fMRI)data.Whether they can complementarily reveal brain regional functional abnormalities in attention-deficit/hyperactivity disorder(ADHD)remains unknown.In this study,we applied ReHo and ALFF to 23 medication-na ve boys diagnosed with ADHD and 25 age-matched healthy male controls using whole-brain voxel-wise analysis.Correlation analyses were conducted in the ADHD group to investigate the relationship between the regional spontaneous brain activity measured by the two approaches and the clinical symptoms of ADHD.We found that the ReHo method showed widely-distributed differences between the two groups in the fronto-cingulo-occipitocerebellar circuitry,while the ALFF method showed a difference only in the right occipital area.When a larger smoothing kernel and a more lenient threshold were used for ALFF,more overlapped regions were found between ALFF and ReHo,and ALFF even found some new regions with group differences.The ADHD symptom scores were correlated with the ReHo values in the right cerebellum,dorsal anterior cingulate cortex and left lingual gyrus in the ADHD group,while no correlation was detected between ALFF and ADHD symptoms.In conclusion,ReHo may be more sensitive to regional abnormalities,at least in boys with ADHD,than ALFF.And ALFF may be complementary to ReHo in measuring local spontaneous activity.Combination of the two may yield a more comprehensive pathophy-siological framework for ADHD.
文摘This paper introduces a new concept of "State Representation Methodology (SRM)" which is a kind of bridge condition assessment method for structural health monitoring system (SHM). There are many methods for system identification from the simplicity comparison of damage index to the complicated statistical pattern recognition algorithms in SHM. In these methods, modal analysis and parameters identification or many defined indices are common-used for extracting the dynamic or static characteristics of a system. However, there is a common problem: due to the complexity of a large size system with high-order nonlinear characteristics and severe environment interference, it is impossible to extract and quantify exactly these modal parameters or system parameters or indices as the feature vectors of a system in damage detection in an easy way. The SRM considered a more general theory for the non-parametric description of system state.
文摘The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.
文摘In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated assembly of global stiffness matrix and repeated inverse operations of the matrix caused by constant changes of structure topology. A new criterion of degenerate of the structure into mechanism is introduced. The calculation examples are satisfactory.
基金Funded by the National Natural Science Foundation of China(No.51174179)
文摘Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the reactants, intermediates, products and transition states of the triplet ground potential energy surfaces of [Ni, O, C2, H4] were obtained at the B3LYP/6-311++G(d,p) levels in C,H,O atoms and B3LYP/ Lanl2 dz in Ni atom. It was found through our calculations that the decabonylation of acetaldehyde contains four steps including encounter complexation, C-C activation, aldehyde H-shift and nonreactive dissociation. The results revealed that C-C activation induced by Ni L2(L=SO3CH3) led to the decarbonylation of acetaldehyde.
基金Project supported by the Natural Science Foundation of Shanxi Province (Grant No 20031006).
文摘The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. The calculation of the local density of states shows that new states will emerge between the resonant Wannier-Stark states as a result of the intervention of time-dependent impurity potential, and the increase in electric field strength of impurity will result in the growing of the number of new states between the gaps of neighbouring Stark ladders.
基金Project supported by the Natural Science Foundation of Education Committee of Chongqing (No. KJ091311)
文摘The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the C2Hx(x = 4~6) species adsorption on the Fe(110) surface. The adsorption energy and equilibrium geometry of the species C2Hx(x = 4~6) on four possible sites(top,hcp,SB and LB) on the Fe(110) surface were predicted and compared. Mulliken charges and density of states analysis of the most stable site have been discussed. It is found that the species of C2H6 and C2H5 are adsorbed strongly on the Fe(110) surface with calculated adsorption energy of -80.24 and -178.89 kJ·mol^-1 at the Fe-LB(long-bridge) ,respectively. However,the C2H4 is adsorbed strongly on the Fe(110) surface with calculated adsorption energies of -114.96 kJ·mol^-1 at the top. The results indicate that the charge transferring process can be completed by chemisorption between Fe(110) surface and the species. Moreover,the chemical bands can be formed by chemisorptions between the Fe(110) surface and the species,too.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
文摘Objective Using resting-state functional magnetic resonance imaging (rs-fMRI),we explored the changes in dynamic functional network connections (dFNC) in the brains of patients with first-episode schizophrenia (SZ)and evaluated the potential clinical value of dFNC changes in combination with a machine learning model.
基金Project supported by the Chinese Postdoctoral Science Foundation (No. 2003033486)
文摘The gas phase reaction mechanism of Cl2 + I2 = 2ICl has been theoretically investigated by DFF method at the B3LYP/3-21 G* level. Transition states of three reaction channels were consequently given. The results indicate that in the title reaction the least activation energy of bi-molecular reaction was smaller than the dissociation energies of I2 and Cl2, and thus the reaction mechanism was the course of molecule-molecule interaction at low reaction rate. If other factors such as illumination were taken into account, I2 could dissociate into I atoms and then react with Cl2, or Cl2 dissociates into CI atoms and reacts with I2. These were photochemical reactions with high reaction speed. The theoretical results were further validated with absorbance measurement at 516 nm.
文摘The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is established and then applied to the Tangshan earthquake data, with some conclusions drawn.
基金Funded by National Natural Science Foundation of China(Nos.61475132,61501392,11475143,11304141)the National Training Programs of Innovation and Entrepreneurship for Undergraduates(No.201510477001)
文摘The structural and elastic properties of the recently-discovered wⅡ- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials.The elastic constants show that wⅡ- and δ-Si3N4 are mechanically stable in the pressure ranges of 0-50 GPa and 40-50 GPa,respectively.The α→wⅡ phase transition can be observed at 18.6 GPa and 300 K.The β→δ phase transformation occurs at pressures of 29.6,32.1,35.9,39.6,41.8,and 44.1 GPa when the temperatures are100,200,300,400,500,and 600 K,respectively.The results show that the interactions among the N-2s,Si-3s,3p bands(lower valence band) and the Si-3p,N-2p bands(upper valence band) play an important role in the stabilities of the wⅡ and S phases.Moreover,several thermodynamic parameters(thermal expansion,free energy,bulk modulus and heat capacity) of δ-Si3N4 are also obtained.Some interesting features are found in these properties.δ-Si3N4 is predicted to be a negative thermal expansion material.The adiabatic bulk modulus decreases with applied pressure,but a majority of materials show the opposite trend.Further experimental investigations with higher precisions may be required to determine the fundamental properties of wⅡ- andδ-Si3N4.
文摘Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β and have simple calculation forms. Finally, the validity of the explicit iteration algorithm is illustrated through two examples by MATLAB programming.