This paper is concerned with the oscillation of second order linear functional equations of the form x(g(t)) = p(t)x(t) + Q(t)X(g(2)(t)), Where p, Q, g : [t(0), infinity) --> R+ = [0, infinity) are given real value...This paper is concerned with the oscillation of second order linear functional equations of the form x(g(t)) = p(t)x(t) + Q(t)X(g(2)(t)), Where p, Q, g : [t(0), infinity) --> R+ = [0, infinity) are given real valued functions such that g(t) not equivalent to t, lim(t-->infinity) g(t) = infinity. It is proved here that when 0 less than or equal to m := lim inf(t-->infinity) Q(t)P(g(t)) less than or equal to 1/4 all solutions of this equation oscillate if the condition lim(t-->infinity) sup Q(t)P(g(t)) > (1 + root1 -4m/2)(2) (*) is satisfied. It should be emphasized that the condition (*) can not be improved in some sense.展开更多
In this article, we mainly investigate the growth and existence of meromorphic solutions of a type of systems of composite functional equations, and obtain some interesting results. It extends some results concerning ...In this article, we mainly investigate the growth and existence of meromorphic solutions of a type of systems of composite functional equations, and obtain some interesting results. It extends some results concerning functional equations to the systems of functional equations.展开更多
In this article, we establish some uniqueness theorems that improves some results of H. X. Yi for a family of meromorphic functions, and as applications, we give some results about the non-existence of meromorphic sol...In this article, we establish some uniqueness theorems that improves some results of H. X. Yi for a family of meromorphic functions, and as applications, we give some results about the non-existence of meromorphic solutions of Fermat type functional equations.展开更多
By use of Nevanlinna value distribution theory, we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get ...By use of Nevanlinna value distribution theory, we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get is about both components of meromorphic solutions on the system of composite functional equations satisfying Riccati differential equation, the other one is property of meromorphic solutions of the other system of composite functional equations while restricting the growth.展开更多
For the famous Feigenbaum's equations, in this paper, we established its constructive theorem of the peak-unimodal, then we found out other paths to explore the peak-unimodal solutions. For example, we proceed on ...For the famous Feigenbaum's equations, in this paper, we established its constructive theorem of the peak-unimodal, then we found out other paths to explore the peak-unimodal solutions. For example, we proceed on the direction to try the non-symmetrical continuous peak-unimodal solutions and C1 solutions.展开更多
A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view...A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.展开更多
The functional equation f(z)^n+g(z)^n=1 can be interpreted as the Fermat-type equations over function field.In this paper,by using Nevanlinna theory of meromorphic functions,we investigate the existence of meromorphic...The functional equation f(z)^n+g(z)^n=1 can be interpreted as the Fermat-type equations over function field.In this paper,by using Nevanlinna theory of meromorphic functions,we investigate the existence of meromorphic solutions of hyper-order strictly less than 1 to the Fermat-type functional equation(a0f(z)+a1f(z+c))^(3)+(b0f(z)+b1f(z+c))3=e^(αz+β),where a0,a1,b0,b1,α,β,c are complex constants and c≠0.展开更多
Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a cont...Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a continuous map, and f|(D m)° is analytic}. For H∈ A(D m,C)(m≥2), f∈A(D,D) and z∈D, write Ψ H(f)(z)=H(z,f(z),...,f m-1(z)). Suppose F,G∈A(D 2n+1,C), and H k,K k∈A(D k,C), k=2,...,n. In this paper, the system of functional equations F(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0 G(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0(z∈D) is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A(D,D) are given.展开更多
In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a m...In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].展开更多
In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome b...In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome by utilization of Hardy-Boedewadt's theorem.展开更多
Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f ...Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y)=0 on Lipschitz spaces.展开更多
Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and ...Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and f|D ° is analytic}. Suppose G,H: D 2n+1 →C are continuous maps (n≥2), and G|(D 2n+1 ) °, H|(D 2n+1 ) ° are analytic. In this paper, we study the system of iterative functional equationsG(z,f(z),…,f n(z), g(z),…,g n(z))=0, H(z,f(z),…,f n(z), g(z),…,g n(z))=0, for any z∈D,and give some conditions for the system of equations to have a solution or a unique solution in A(D,D) ×A(D,D).展开更多
The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group...The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
Let n ≥ 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam stability problem for the following functional equation f(n-1∑j=1 xj+2xn)+f(n-1∑j=1 xj-2xn)+8 n-1∑j=1f(xj)=2f(n-1∑j=1 xj...Let n ≥ 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam stability problem for the following functional equation f(n-1∑j=1 xj+2xn)+f(n-1∑j=1 xj-2xn)+8 n-1∑j=1f(xj)=2f(n-1∑j=1 xj) +4 n-1∑j=1[f(xj+xn)+f(xj-xn)] which contains as solutions cubic, quadratic or additive mappings.展开更多
In this paper we shall study the solvability of discontinuous functional equations, and apply the so-obtained results to discontinuous implicit initial value problems in ordered Banach spaces. The proofs are based on ...In this paper we shall study the solvability of discontinuous functional equations, and apply the so-obtained results to discontinuous implicit initial value problems in ordered Banach spaces. The proofs are based on fixed point results in ordered spaces proved recently by the author. A concrete example is solved to demonstrate the obtained results.展开更多
In this paper,we present a very simple explicit description of Langlands Eisenstein series for SL(n,Z).The functional equations of these Eisenstein series are heuristically derived from the functional equations of cer...In this paper,we present a very simple explicit description of Langlands Eisenstein series for SL(n,Z).The functional equations of these Eisenstein series are heuristically derived from the functional equations of certain divisor sums and certain Whittaker functions that appear in the Fourier coefficients of the Eisenstein series.We conjecture that the functional equations are unique up to a real affine transformation of the s variables defining the Eisenstein series and prove the uniqueness conjecture in certain cases.展开更多
The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are ...The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.展开更多
In this paper, we study a class of doubly perturbed neutral stochastic functional equations driven by fractional Brownian motion. Under some non-Lipschitz conditions, we will prove the existence and uniqueness of the ...In this paper, we study a class of doubly perturbed neutral stochastic functional equations driven by fractional Brownian motion. Under some non-Lipschitz conditions, we will prove the existence and uniqueness of the solution to these equations by providing a semimartingale approximation of a fractional stochastic integration.展开更多
文摘This paper is concerned with the oscillation of second order linear functional equations of the form x(g(t)) = p(t)x(t) + Q(t)X(g(2)(t)), Where p, Q, g : [t(0), infinity) --> R+ = [0, infinity) are given real valued functions such that g(t) not equivalent to t, lim(t-->infinity) g(t) = infinity. It is proved here that when 0 less than or equal to m := lim inf(t-->infinity) Q(t)P(g(t)) less than or equal to 1/4 all solutions of this equation oscillate if the condition lim(t-->infinity) sup Q(t)P(g(t)) > (1 + root1 -4m/2)(2) (*) is satisfied. It should be emphasized that the condition (*) can not be improved in some sense.
基金Project supported by NSF of China (10471065)the Natural Science Foundation of Guangdong Province (04010474)
文摘In this article, we mainly investigate the growth and existence of meromorphic solutions of a type of systems of composite functional equations, and obtain some interesting results. It extends some results concerning functional equations to the systems of functional equations.
文摘In this article, we establish some uniqueness theorems that improves some results of H. X. Yi for a family of meromorphic functions, and as applications, we give some results about the non-existence of meromorphic solutions of Fermat type functional equations.
文摘By use of Nevanlinna value distribution theory, we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get is about both components of meromorphic solutions on the system of composite functional equations satisfying Riccati differential equation, the other one is property of meromorphic solutions of the other system of composite functional equations while restricting the growth.
基金Projects supported by National Natural Science Foundation of China
文摘For the famous Feigenbaum's equations, in this paper, we established its constructive theorem of the peak-unimodal, then we found out other paths to explore the peak-unimodal solutions. For example, we proceed on the direction to try the non-symmetrical continuous peak-unimodal solutions and C1 solutions.
文摘A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.
基金Supported by the National Natural Science Foundation of China(Grant No.11971344)。
文摘The functional equation f(z)^n+g(z)^n=1 can be interpreted as the Fermat-type equations over function field.In this paper,by using Nevanlinna theory of meromorphic functions,we investigate the existence of meromorphic solutions of hyper-order strictly less than 1 to the Fermat-type functional equation(a0f(z)+a1f(z+c))^(3)+(b0f(z)+b1f(z+c))3=e^(αz+β),where a0,a1,b0,b1,α,β,c are complex constants and c≠0.
基金Supported by the National Natural Science Foundation of China (1 0 2 2 6 0 1 4) ,Guangxi Science Foun-dation (0 2 2 90 0 1 )
文摘Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. For any subset K of C and any integer m≥1, write A(D m,K)={f|f∶D m→K is a continuous map, and f|(D m)° is analytic}. For H∈ A(D m,C)(m≥2), f∈A(D,D) and z∈D, write Ψ H(f)(z)=H(z,f(z),...,f m-1(z)). Suppose F,G∈A(D 2n+1,C), and H k,K k∈A(D k,C), k=2,...,n. In this paper, the system of functional equations F(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0 G(z,f(z),f 2(Ψ H 2(f)(z)),...,f n(Ψ H n(f)(z)),g(z),g 2(Ψ K 2(g)(z)),..., g n(Ψ K n(g)(z)))=0(z∈D) is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A(D,D) are given.
基金This work was supported by Research Professional Development Project under the Science Achievement Scholarship of Thailand(SAST)and Thammasat University Research Fund,Contract No.TUGG 33/2562The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under grant no.MRG6180283 for financial support during the preparation of this manuscript.
文摘In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].
文摘In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome by utilization of Hardy-Boedewadt's theorem.
文摘Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y)=0 on Lipschitz spaces.
文摘Let r be a given positive number. Denote by D=D r the closed disc in the complex plane C whose center is the origin and radius is r. Write A(D,D)={f: f is a continuous map from D into itself, and f|D ° is analytic}. Suppose G,H: D 2n+1 →C are continuous maps (n≥2), and G|(D 2n+1 ) °, H|(D 2n+1 ) ° are analytic. In this paper, we study the system of iterative functional equationsG(z,f(z),…,f n(z), g(z),…,g n(z))=0, H(z,f(z),…,f n(z), g(z),…,g n(z))=0, for any z∈D,and give some conditions for the system of equations to have a solution or a unique solution in A(D,D) ×A(D,D).
文摘The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
基金supported by research fund of Chungnam National University in 2008
文摘Let n ≥ 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam stability problem for the following functional equation f(n-1∑j=1 xj+2xn)+f(n-1∑j=1 xj-2xn)+8 n-1∑j=1f(xj)=2f(n-1∑j=1 xj) +4 n-1∑j=1[f(xj+xn)+f(xj-xn)] which contains as solutions cubic, quadratic or additive mappings.
文摘In this paper we shall study the solvability of discontinuous functional equations, and apply the so-obtained results to discontinuous implicit initial value problems in ordered Banach spaces. The proofs are based on fixed point results in ordered spaces proved recently by the author. A concrete example is solved to demonstrate the obtained results.
基金supported by Simons Collaboration(Grant No.567168)。
文摘In this paper,we present a very simple explicit description of Langlands Eisenstein series for SL(n,Z).The functional equations of these Eisenstein series are heuristically derived from the functional equations of certain divisor sums and certain Whittaker functions that appear in the Fourier coefficients of the Eisenstein series.We conjecture that the functional equations are unique up to a real affine transformation of the s variables defining the Eisenstein series and prove the uniqueness conjecture in certain cases.
文摘The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.
文摘In this paper, we study a class of doubly perturbed neutral stochastic functional equations driven by fractional Brownian motion. Under some non-Lipschitz conditions, we will prove the existence and uniqueness of the solution to these equations by providing a semimartingale approximation of a fractional stochastic integration.