Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent c...Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent company are expatiated.There are three methods of transferring waveform data to arbitrary waveform generator 33250A,among which,the front panel method can produce a simple interface for arbitrary waveforms and is applicable to the composition of a small amount of linear waveform segment,and the progress of this method is explained in detail.This way is convenient and can be widely used,and it will offer some good guidance in library works.展开更多
In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along w...In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer(MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb(OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.展开更多
A desiga of arbitrary waveform generator using NI PXI- 5412 module (an arbitrary waveform generator) was provided in this paper, based on virtual instrument technology and LabVIEW. The generator can produce standard...A desiga of arbitrary waveform generator using NI PXI- 5412 module (an arbitrary waveform generator) was provided in this paper, based on virtual instrument technology and LabVIEW. The generator can produce standard function waveforms, such as sine, triangle, square wave with adjustable amplitude and frequency. It can also produce arbitrary waveforms of different data files importing by Analog Waveform Geaemtor Software. A heart dectric wavefonn was set as an example of arbitrary waveform generation. It has practical value, because the standard functions and heart electric waveforms generated by the generator can be used in laboratories.展开更多
A memory compress algorithm for 12\|bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16×13bits with a Spurious Free Dynamic Range (SFDR) 90.7dBc...A memory compress algorithm for 12\|bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16×13bits with a Spurious Free Dynamic Range (SFDR) 90.7dBc (1/1890 of uncompressed memory at the same SFDR) and to 8×12bits with a SFDR 79dBc. Its hardware cost is six adders and two multipliers. Exploiting this memory compress technique makes it possible to build a high performance AWG on a chip.展开更多
We demonstrate experimentally a radio frequency arbitrary waveform generator using the incoherent wavelength-to-time mapping technique. The system is implemented by amplitude modulation of a broadband optical resource...We demonstrate experimentally a radio frequency arbitrary waveform generator using the incoherent wavelength-to-time mapping technique. The system is implemented by amplitude modulation of a broadband optical resource whose spectrum is reshaped by a programmable optical pulse shaper and transmitted over a single mode fiber link. The shape of the generated waveform is controlled by the optical pulse shaper, and the fiber link introduces a certain group velocity delay to implement wavelength-to-time mapping. Assisted by the flexible optical pulse shaper, we obtain different shapes of optical waveforms, such as rectangle, triangle, and sawtooth waveforms. Furthermore, we also demonstrate ultra-wideband generation, such as Gaussian monocycle, doublet, and triplet waveforms, using the incoherent technique.展开更多
We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for a...We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for all taps are controlled by an external thermal source, resulting in an optical pulse shaper. We further demonstrate optical arbitrary waveform generation based on the optical pulse shaper assisted by an optical frequency comb injection. Four different optical waveforms are generated when setting the central wavelengths at 1533.78 nm and 1547.1 nm and setting the thermal source temperatures at 23 ℃ and 33 ℃, respectively. Our scheme has distinct advantages of compactness, capability for integrating with electronics since the integrated silicon waveguide is employed.展开更多
Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integ...Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach–Zehnder interferometer(MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo–optic effect or electro–optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip,which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator(SOI) wafer, which has a top silicon layer of about 220 nm in thickness.展开更多
In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilin...In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.展开更多
Purpose To enhance signal generation capabilities,improve the performance of experimental and testing equipment,and promote innovation in related technological fields,this study aims to develop a high-bandwidth Arbitr...Purpose To enhance signal generation capabilities,improve the performance of experimental and testing equipment,and promote innovation in related technological fields,this study aims to develop a high-bandwidth Arbitrary Waveform Generator(AWG)using the high-speed Digital-to-Analog Converter(DAC)ADA14S8000 made in China.Methods The AWG uses the Direct Digital Waveform Synthesis(DDWS)principle with FPGA assistance to generate the waveform and achieved a storage depth of 2 Gpts with four Double Data Rate 4 Synchronous Dynamic Random-Access Memory(DDR4 SDRAM).The AWG comprises the waveform generation module,waveform conditioning module,and an operational software called AWGOperator.To initiate waveform generation,the AWGOperator is used to configure the waveform parameters,after which the waveform data are transferred to the waveform generation module via USB 3.0.Subsequently,the waveform generation module processes the data and generates the corresponding analogue waveform.Real-time adjustments of amplitude,bias,and delay parameters of the output waveform are also supported.Results and conclusion The AWG provides a maximum sampling rate of 4 GSPS,a resolution of 14 bits,and a bandwidth specification of 1.6 GHz,and typical non-harmonic distortion of−55 dBc and a phase noise of less than−110 dBc/Hz at 10 kHz offset.展开更多
Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi...Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.展开更多
A physical model of sinusoidal function was established. It is generalized that the force is directly proportional to a power function of the distance in a classical spring-oscillator system. The differential equation...A physical model of sinusoidal function was established. It is generalized that the force is directly proportional to a power function of the distance in a classical spring-oscillator system. The differential equation of the generalized model was given. Simulations were conducted with different power values. The results show that the solution of the generalized equation is a periodic function. The expressions of the amplitude and the period(frequency) of the generalized equation were derived by the physical method. All the simulation results coincide with the calculation results of the derived expressions. A special function also was deduced and proven to be convergent in the theoretical analysis. The limit value of the special function also was derived. The generalized model can be used in solving a type of differential equation and to generate periodic waveforms.展开更多
As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum pro...As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum processors and host computers.Here,we introduce a microwave measurement and control system(M^(2)CS)dedicated to large-scale superconducting quantum processors.M^(2)CS features a compact modular design that balances overall performance,scalability and flexibility.Electronic tests of M^(2)CS show key metrics comparable to commercial instruments.Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results,confirming M^(2)CS's capability to meet the stringent requirements of quantum experiments running on intermediate-scale quantum processors.The compact and scalable nature of our design holds the potential to support over 1000 qubits after upgrade in stability and integration.The M^(2)CS architecture may also be adopted to a wider range of scenarios,including other quantum computing platforms such as trapped ions and silicon quantum dots,as well as more traditional applications like microwave kinetic inductance detectors and phased array radar systems.展开更多
This paper reviews recent progresses on optical arbitrary waveform generation (AWG) techniques, which could be used to break the speed and bandwidth bottle- necks of electronics technologies for waveform generation....This paper reviews recent progresses on optical arbitrary waveform generation (AWG) techniques, which could be used to break the speed and bandwidth bottle- necks of electronics technologies for waveform generation. The main enabling techniques for optically generating optical and microwave waveforms are introduced and reviewed in this paper, such as wavelength-to-time mapping techniques, space-to-time mapping techniques, temporal pulse shaping (TPS) system, optoelectronics oscillator (OEO), programmable optical filters, optical differentiator and integrator and versatile electro-optic modulation implementations. The main advantages and challenges of these optical AWG techniques are also discussed.展开更多
文摘Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent company are expatiated.There are three methods of transferring waveform data to arbitrary waveform generator 33250A,among which,the front panel method can produce a simple interface for arbitrary waveforms and is applicable to the composition of a small amount of linear waveform segment,and the progress of this method is explained in detail.This way is convenient and can be widely used,and it will offer some good guidance in library works.
基金supported by the National Natural Science Foundation of China(No.61377075)Program for New Century Excellent Talents in University(No.NCET-07-0611)
文摘In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer(MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb(OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.
基金supported by Research Project of "SUST Spring Bud"from Shandong University of Science and Technology(No.2008BWZ042)
文摘A desiga of arbitrary waveform generator using NI PXI- 5412 module (an arbitrary waveform generator) was provided in this paper, based on virtual instrument technology and LabVIEW. The generator can produce standard function waveforms, such as sine, triangle, square wave with adjustable amplitude and frequency. It can also produce arbitrary waveforms of different data files importing by Analog Waveform Geaemtor Software. A heart dectric wavefonn was set as an example of arbitrary waveform generation. It has practical value, because the standard functions and heart electric waveforms generated by the generator can be used in laboratories.
文摘A memory compress algorithm for 12\|bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16×13bits with a Spurious Free Dynamic Range (SFDR) 90.7dBc (1/1890 of uncompressed memory at the same SFDR) and to 8×12bits with a SFDR 79dBc. Its hardware cost is six adders and two multipliers. Exploiting this memory compress technique makes it possible to build a high performance AWG on a chip.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB301704)the National Natural Science Foundation of China (Grant Nos. 60901006 and 11174096)the Fundamental Research Funds for the Central Universities of China (Grant No. 2010QN033)
文摘We demonstrate experimentally a radio frequency arbitrary waveform generator using the incoherent wavelength-to-time mapping technique. The system is implemented by amplitude modulation of a broadband optical resource whose spectrum is reshaped by a programmable optical pulse shaper and transmitted over a single mode fiber link. The shape of the generated waveform is controlled by the optical pulse shaper, and the fiber link introduces a certain group velocity delay to implement wavelength-to-time mapping. Assisted by the flexible optical pulse shaper, we obtain different shapes of optical waveforms, such as rectangle, triangle, and sawtooth waveforms. Furthermore, we also demonstrate ultra-wideband generation, such as Gaussian monocycle, doublet, and triplet waveforms, using the incoherent technique.
基金supported by the National Basic Research Program of China(Grant No.2011CB301704)the Program for New Century Excellent Talents in Ministryof Education of China(Grant No.NCET-11-0168)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201139)the National Natural Science Foundation of China(Grant Nos.60901006 and 11174096)
文摘We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for all taps are controlled by an external thermal source, resulting in an optical pulse shaper. We further demonstrate optical arbitrary waveform generation based on the optical pulse shaper assisted by an optical frequency comb injection. Four different optical waveforms are generated when setting the central wavelengths at 1533.78 nm and 1547.1 nm and setting the thermal source temperatures at 23 ℃ and 33 ℃, respectively. Our scheme has distinct advantages of compactness, capability for integrating with electronics since the integrated silicon waveguide is employed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60901006 and 11174096)the National Basic Research Program of China(Grant No.2011CB301704)+1 种基金the Program for New Century Excellent Talents in Ministry of Education of China(Grant No.NCET-11-0168)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201139)
文摘Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach–Zehnder interferometer(MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo–optic effect or electro–optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip,which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator(SOI) wafer, which has a top silicon layer of about 220 nm in thickness.
基金supported by the National Natural Science Foundation of China,Grant No.12375006。
文摘In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant WK3440000006,Grant WK2360000003,Grant WK2030040064,Grant YD2030000601,Grant YD2030000602 and Grant YD2030000604in part by the National Natural Science Funds of China under Grant 11603023 and Grant 11773026+3 种基金in part by the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)under Grant XDC07020200 and XDA15020605in part by Research Funds of the State Key Laboratory of Particle Detection and Electronics under Grant SKLPDE-ZZ-202325 and SKLPDE-KF-202314in part by the Frontier Scientific Research Program of Deep Space Exploration Laboratory under Grant 2022-QYKYJH-HXYF-012in part by the Cyrus Chun Ying Tang Foundation.
文摘Purpose To enhance signal generation capabilities,improve the performance of experimental and testing equipment,and promote innovation in related technological fields,this study aims to develop a high-bandwidth Arbitrary Waveform Generator(AWG)using the high-speed Digital-to-Analog Converter(DAC)ADA14S8000 made in China.Methods The AWG uses the Direct Digital Waveform Synthesis(DDWS)principle with FPGA assistance to generate the waveform and achieved a storage depth of 2 Gpts with four Double Data Rate 4 Synchronous Dynamic Random-Access Memory(DDR4 SDRAM).The AWG comprises the waveform generation module,waveform conditioning module,and an operational software called AWGOperator.To initiate waveform generation,the AWGOperator is used to configure the waveform parameters,after which the waveform data are transferred to the waveform generation module via USB 3.0.Subsequently,the waveform generation module processes the data and generates the corresponding analogue waveform.Real-time adjustments of amplitude,bias,and delay parameters of the output waveform are also supported.Results and conclusion The AWG provides a maximum sampling rate of 4 GSPS,a resolution of 14 bits,and a bandwidth specification of 1.6 GHz,and typical non-harmonic distortion of−55 dBc and a phase noise of less than−110 dBc/Hz at 10 kHz offset.
基金supported by the ‘‘Detection of very low-flux background neutrons in China Jinping Underground Laboratory’’ project of the National Natural Science Foundation of China(No.11275134)
文摘Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.
基金Funded by the National Natural Science Foundation of China (No. 50375113).
文摘A physical model of sinusoidal function was established. It is generalized that the force is directly proportional to a power function of the distance in a classical spring-oscillator system. The differential equation of the generalized model was given. Simulations were conducted with different power values. The results show that the solution of the generalized equation is a periodic function. The expressions of the amplitude and the period(frequency) of the generalized equation were derived by the physical method. All the simulation results coincide with the calculation results of the derived expressions. A special function also was deduced and proven to be convergent in the theoretical analysis. The limit value of the special function also was derived. The generalized model can be used in solving a type of differential equation and to generate periodic waveforms.
基金supported by the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant Nos.KQTD20210811090049034,RCBS20231211090824040,and RCBS20231211090815032)the National Natural Science Foundation of China(Grant Nos.12174178,12204228,12374474,and 123b2071)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301703)the Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation(Grant No.HZQB-KCZYB-2020050)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2024A1515011714 and 2022A1515110615)。
文摘As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum processors and host computers.Here,we introduce a microwave measurement and control system(M^(2)CS)dedicated to large-scale superconducting quantum processors.M^(2)CS features a compact modular design that balances overall performance,scalability and flexibility.Electronic tests of M^(2)CS show key metrics comparable to commercial instruments.Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results,confirming M^(2)CS's capability to meet the stringent requirements of quantum experiments running on intermediate-scale quantum processors.The compact and scalable nature of our design holds the potential to support over 1000 qubits after upgrade in stability and integration.The M^(2)CS architecture may also be adopted to a wider range of scenarios,including other quantum computing platforms such as trapped ions and silicon quantum dots,as well as more traditional applications like microwave kinetic inductance detectors and phased array radar systems.
基金Acknowledgements We would like to thank our colleagues for their contributions in these works, such as Reza Ashrafi, Chao Wang, Tae-Jung Ahn, Ze Li, Wei Li, Ningbo Huang, Ye Deng, Yi Hu, Roberto Morandotti, Yichen Han, Shilong Pan, Maria Rosario and Wangzhe Li. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61377002, 61321063, and 61090391). This work was also supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Ming Li was supported in part by the "Thousand Young Talent" program.
文摘This paper reviews recent progresses on optical arbitrary waveform generation (AWG) techniques, which could be used to break the speed and bandwidth bottle- necks of electronics technologies for waveform generation. The main enabling techniques for optically generating optical and microwave waveforms are introduced and reviewed in this paper, such as wavelength-to-time mapping techniques, space-to-time mapping techniques, temporal pulse shaping (TPS) system, optoelectronics oscillator (OEO), programmable optical filters, optical differentiator and integrator and versatile electro-optic modulation implementations. The main advantages and challenges of these optical AWG techniques are also discussed.