The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
AIM To establish minimum clinically important difference(MCID) for measurements in an orthopaedic patient population with joint disorders.METHODS Adult patients aged 18 years and older seeking care for joint condition...AIM To establish minimum clinically important difference(MCID) for measurements in an orthopaedic patient population with joint disorders.METHODS Adult patients aged 18 years and older seeking care for joint conditions at an orthopaedic clinic took the Patient-Reported Outcomes Measurement Information System Physical Function(PROMIS~? PF) computerized adaptive test(CAT), hip disability and osteoarthritis outcome score for joint reconstruction(HOOS JR), and the knee injury and osteoarthritis outcome score for joint reconstruction(KOOS JR) from February 2014 to April 2017. MCIDs were calculated using anchorbased and distribution-based methods. Patient reports of meaningful change in function since their first clinic encounter were used as an anchor.RESULTS There were 2226 patients who participated with a mean age of 61.16(SD = 12.84) years, 41.6% male, and 89.7% Caucasian. Mean change ranged from 7.29 to 8.41 for the PROMIS~? PF CAT, from 14.81 to 19.68 for the HOOS JR, and from 14.51 to 18.85 for the KOOS JR. ROC cut-offs ranged from 1.97-8.18 for the PF CAT, 6.33-43.36 for the HOOS JR, and 2.21-8.16 for the KOOS JR. Distribution-based methods estimated MCID values ranging from 2.45 to 21.55 for the PROMIS~? PF CAT; from 3.90 to 43.61 for the HOOS JR, and from 3.98 to 40.67 for the KOOS JR. The median MCID value in the range was similar to the mean change score for each measure and was 7.9 for the PF CAT, 18.0 for the HOOS JR, and 15.1 for the KOOS JR.CONCLUSION This is the first comprehensive study providing a wide range of MCIDs for the PROMIS? PF, HOOS JR, and KOOS JR in orthopaedic patients with joint ailments.展开更多
The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. ...The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. In this study, we investigate if there is a systematic difference coming from the choice between the Vienna Mapping Function 1(VMF1) and the Global Mapping Function(GMF) for the modeling of Zenith Total Delay(ZTD) estimates, as well as the Integrated Precipitable Water Vapor(IPWV) estimates that are deduced from them. As ZTD estimates cannot be fully separated from coordinate estimates, we also investigated the coordinate repeatability between subsequent measurements.For this purpose, we monitored twelve GNSS stations on a global scale, for each of the three climatic zones(polar, mid-latitudes and tropical), with four stations on each zone. We used an automated processing based on the Bernese GNSS Software Version 5.2 by applying the Precise Point Positioning(PPP)approach, L3 Ionosphere-free linear combination, 7 cutoff elevation angle and 2 h sampling. We noticed an excellent agreement with the ZTD estimates and coordinate repeatability for all the stations w.r.t to CODE(the Center for Orbit Determination in Europe) and USNO(US Naval Observatory) products, except for the Antarctic station(Davis) which shows systematic biases for the GMF related results. As a final step, we investigated the effect of using two mapping functions(VMF1 and GMF) to estimate the IPWV,w.r.t the IPWV estimates provided by the Integrated Global Radiosonde Archive(IGRA). The GPS-derived IPWV estimates are very close to the radiosonde-derived IPWV estimates, except for one station in the tropics(Tahiti).展开更多
Two-phase fluid properties such as entropy, internal energy, and heat capacity are given by thermodynamically defined fit functions. Each fit function is expressed as a temperature function in terms of a power series ...Two-phase fluid properties such as entropy, internal energy, and heat capacity are given by thermodynamically defined fit functions. Each fit function is expressed as a temperature function in terms of a power series expansion about the critical point. The leading term with the critical exponent dominates the temperature variation between the critical and triple points. With β being introduced as the critical exponent for the difference between liquid and vapor densities, it is shown that the critical exponent of each fit function depends (if at all) on β. In particular, the critical exponent of the reciprocal heat capacity c﹣1 is α=1-2β and those of the entropy s and internal energy u are?2β, while that of the reciprocal isothermal compressibility?κ﹣1T is γ=1. It is thus found that in the case of the two-phase fluid the Rushbrooke equation conjectured α +?2β + γ=2 combines the scaling laws resulting from the two relations c=du/dT and?κT=dlnρ/dp. In the context with c, the second temperature derivatives of the chemical potential μ and vapor pressure p are investigated. As the critical point is approached, ﹣d2μ/dT2 diverges as c, while?d2p/dT2 converges to a finite limit. This is explicitly pointed out for the two-phase fluid, water (with β=0.3155). The positive and almost vanishing internal energy of the one-phase fluid at temperatures above and close to the critical point causes conditions for large long-wavelength density fluctuations, which are observed as critical opalescence. For negative values of the internal energy, i.e. the two-phase fluid below the critical point, there are only microscopic density fluctuations. Similar critical phenomena occur when cooling a dilute gas to its Bose-Einstein condensate.展开更多
Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulati...Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cog-nition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China(approval No. TJ-A20151102) on July 11, 2015.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New ...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geom...This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry ( λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specific...This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.展开更多
Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure pro...Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure proper protein folding,the addition of post-translational modifications,and delivering to intracellular and extracellular destinations.Astrocytes are fundamental homeostatic cells,controlling multiple aspects of the central nervous system physiology,such as ion balance,nutrients,blood flow,neurotransmitters,and responses to insults.Astrocytes are polarized cells,and,such as neurons,extensively use the secretory pathway for secreting factors and exposing functional receptors,channels,and transporters on the plasma membrane.In this review,we will underline the importance of studying the Golgi apparatus and the secretory pathway in astrocytes,based on the possible tight connection between the Golgi apparatus and astrocytes’homeostatic function.Given the topic of this review,we will provide examples mostly about the Golgi apparatus structure,function,localization,and its involvement in astrocytes’homeostatic response,with an insight into congenital glycosylation disorders,as an example of a potential future field in the study of astrocyte homeostatic failure and Golgi apparatus alteration.展开更多
Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission ...Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission are associated with pathophysiological and neurodegenerative disorders,whereas glucagon-like peptide-1 has demonstrated neuroprotective effects.However,it is not yet clear whether diabetes causes alterations in inhibitory input to retinal ganglion cells and whether and how glucagon-like peptide-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to retinal ganglion cells.In the present study,we used the patch-clamp technique to recordγ-aminobutyric acid subtype A receptor-mediated miniature inhibitory postsynaptic currents in retinal ganglion cells from streptozotocin-induced diabetes model rats.We found that early diabetes(4 weeks of hyperglycemia)decreased the frequency of GABAergic miniature inhibitory postsynaptic currents in retinal ganglion cells without altering their amplitude,suggesting a reduction in the spontaneous release ofγ-aminobutyric acid to retinal ganglion cells.Topical administration of glucagon-like peptide-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency,subsequently enhancing the survival of retinal ganglion cells.Concurrently,the protective effects of glucagon-like peptide-1 on retinal ganglion cells in diabetic rats were eliminated by topical administration of exendin-9-39,a specific glucagon-like peptide-1 receptor antagonist,or SR95531,a specific antagonist of theγ-aminobutyric acid subtype A receptor.Furthermore,extracellular perfusion of glucagon-like peptide-1 was found to elevate the frequencies of GABAergic miniature inhibitory postsynaptic currents in both ON-and OFF-type retinal ganglion cells.This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of glucagon-like peptide-1 receptor activation.Moreover,multielectrode array recordings revealed that glucagon-like peptide-1 functionally augmented the photoresponses of ON-type retinal ganglion cells.Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of glucagon-like peptide-1.These results suggest that glucagon-like peptide-1 facilitates the release ofγ-aminobutyric acid onto retinal ganglion cells through the activation of glucagon-like peptide-1 receptor,leading to the de-excitation of retinal ganglion cell circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy.Collectively,our findings indicate that theγ-aminobutyric acid system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy.Furthermore,the topical administration of glucagon-like peptide-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
The aim of this paper is to give some analytic functions which are related to the generating functions for the central factorial numbers. By using these functions and p-adic Volkenborn integral, we derive many new ide...The aim of this paper is to give some analytic functions which are related to the generating functions for the central factorial numbers. By using these functions and p-adic Volkenborn integral, we derive many new identities associated with the Bernoulli and Euler numbers, the central factorial numbers and the Stirling numbers. We also give some remarks and comments on these analytic functions, which are related to the generating functions for the special numbers.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the...Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models–the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.展开更多
In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. ...In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to Dynamical system in a new Double-Chain Model of DNA and a diffusive predator-prey system which play an important role in biology.展开更多
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functio...Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functional recovery after brain injury.Neuromodulation technologies represent one of the fastest-growing fields in medicine.These techniques utilize electricity,magnetism,sound,and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury.Therefore,this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury.Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury.However,studies report negative findings,potentially due to variations in stimulation protocols,differences in observation periods,and the severity of functional impairments among participants across different clinical trials.Additionally,we observed that different neuromodulation techniques share remarkably similar mechanisms,including promoting neuroplasticity,enhancing neurotrophic factor release,improving cerebral blood flow,suppressing neuroinflammation,and providing neuroprotection.Finally,considering the advantages and disadvantages of various neuromodulation techniques,we propose that future development should focus on closed-loop neural circuit stimulation,personalized treatment,interdisciplinary collaboration,and precision stimulation.展开更多
The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis.Macrophage generation of oxysterol activator...The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis.Macrophage generation of oxysterol activators of liver X receptors(LXRs),via sterol 27-hydroxylase,is regulated by the rate of flux of cholesterolto the inner mitochondrial membrane,via a complex of cholesterol trafficking proteins.Oxysterols are key signalling molecules,regulating the transcriptional activity of LXRs which coordinate macrophage sterol metabolism and cytokine production,key features influencing the impact of these cells within atherosclerotic lesions.The precise identity of the complex of proteins mediating mitochondrial cholesterol trafficking in macrophages remains a matter of debate,but may include steroidogenic acute regulatory protein and translocator protein.There is clear evidence that targeting either of these proteins enhances removal of cholesterol via LXRα-dependent induction of ATP binding cassette transporters(ABCA1,ABCG1) and limits the production of inflammatory cytokines; interventions which influence mitochondrial structure and bioenergetics also impact on removal of cholesterol from macrophages.Thus,molecules which can sustain or improve mitochondrial structure,the function of the electron transport chain,or increase the activity of components of the protein complex involved in cholesterol transfer,may therefore have utility in limiting or regressing atheroma development,reducing the incidence of coronary heart disease and myocardial infarction.展开更多
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health,No.U01AR067138.
文摘AIM To establish minimum clinically important difference(MCID) for measurements in an orthopaedic patient population with joint disorders.METHODS Adult patients aged 18 years and older seeking care for joint conditions at an orthopaedic clinic took the Patient-Reported Outcomes Measurement Information System Physical Function(PROMIS~? PF) computerized adaptive test(CAT), hip disability and osteoarthritis outcome score for joint reconstruction(HOOS JR), and the knee injury and osteoarthritis outcome score for joint reconstruction(KOOS JR) from February 2014 to April 2017. MCIDs were calculated using anchorbased and distribution-based methods. Patient reports of meaningful change in function since their first clinic encounter were used as an anchor.RESULTS There were 2226 patients who participated with a mean age of 61.16(SD = 12.84) years, 41.6% male, and 89.7% Caucasian. Mean change ranged from 7.29 to 8.41 for the PROMIS~? PF CAT, from 14.81 to 19.68 for the HOOS JR, and from 14.51 to 18.85 for the KOOS JR. ROC cut-offs ranged from 1.97-8.18 for the PF CAT, 6.33-43.36 for the HOOS JR, and 2.21-8.16 for the KOOS JR. Distribution-based methods estimated MCID values ranging from 2.45 to 21.55 for the PROMIS~? PF CAT; from 3.90 to 43.61 for the HOOS JR, and from 3.98 to 40.67 for the KOOS JR. The median MCID value in the range was similar to the mean change score for each measure and was 7.9 for the PF CAT, 18.0 for the HOOS JR, and 15.1 for the KOOS JR.CONCLUSION This is the first comprehensive study providing a wide range of MCIDs for the PROMIS? PF, HOOS JR, and KOOS JR in orthopaedic patients with joint ailments.
基金the innovation carrier project by Zhejiang provincial science and Technology Department (2017F10008)the French Space Agency (CNES) for their funding, through a DAR grant to the Geodesy Observatory of Tahiti
文摘The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. In this study, we investigate if there is a systematic difference coming from the choice between the Vienna Mapping Function 1(VMF1) and the Global Mapping Function(GMF) for the modeling of Zenith Total Delay(ZTD) estimates, as well as the Integrated Precipitable Water Vapor(IPWV) estimates that are deduced from them. As ZTD estimates cannot be fully separated from coordinate estimates, we also investigated the coordinate repeatability between subsequent measurements.For this purpose, we monitored twelve GNSS stations on a global scale, for each of the three climatic zones(polar, mid-latitudes and tropical), with four stations on each zone. We used an automated processing based on the Bernese GNSS Software Version 5.2 by applying the Precise Point Positioning(PPP)approach, L3 Ionosphere-free linear combination, 7 cutoff elevation angle and 2 h sampling. We noticed an excellent agreement with the ZTD estimates and coordinate repeatability for all the stations w.r.t to CODE(the Center for Orbit Determination in Europe) and USNO(US Naval Observatory) products, except for the Antarctic station(Davis) which shows systematic biases for the GMF related results. As a final step, we investigated the effect of using two mapping functions(VMF1 and GMF) to estimate the IPWV,w.r.t the IPWV estimates provided by the Integrated Global Radiosonde Archive(IGRA). The GPS-derived IPWV estimates are very close to the radiosonde-derived IPWV estimates, except for one station in the tropics(Tahiti).
文摘Two-phase fluid properties such as entropy, internal energy, and heat capacity are given by thermodynamically defined fit functions. Each fit function is expressed as a temperature function in terms of a power series expansion about the critical point. The leading term with the critical exponent dominates the temperature variation between the critical and triple points. With β being introduced as the critical exponent for the difference between liquid and vapor densities, it is shown that the critical exponent of each fit function depends (if at all) on β. In particular, the critical exponent of the reciprocal heat capacity c﹣1 is α=1-2β and those of the entropy s and internal energy u are?2β, while that of the reciprocal isothermal compressibility?κ﹣1T is γ=1. It is thus found that in the case of the two-phase fluid the Rushbrooke equation conjectured α +?2β + γ=2 combines the scaling laws resulting from the two relations c=du/dT and?κT=dlnρ/dp. In the context with c, the second temperature derivatives of the chemical potential μ and vapor pressure p are investigated. As the critical point is approached, ﹣d2μ/dT2 diverges as c, while?d2p/dT2 converges to a finite limit. This is explicitly pointed out for the two-phase fluid, water (with β=0.3155). The positive and almost vanishing internal energy of the one-phase fluid at temperatures above and close to the critical point causes conditions for large long-wavelength density fluctuations, which are observed as critical opalescence. For negative values of the internal energy, i.e. the two-phase fluid below the critical point, there are only microscopic density fluctuations. Similar critical phenomena occur when cooling a dilute gas to its Bose-Einstein condensate.
基金supported by the National Natural Science Foundation of China,No.81272156(to TCG)
文摘Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cog-nition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China(approval No. TJ-A20151102) on July 11, 2015.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry ( λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.
文摘Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure proper protein folding,the addition of post-translational modifications,and delivering to intracellular and extracellular destinations.Astrocytes are fundamental homeostatic cells,controlling multiple aspects of the central nervous system physiology,such as ion balance,nutrients,blood flow,neurotransmitters,and responses to insults.Astrocytes are polarized cells,and,such as neurons,extensively use the secretory pathway for secreting factors and exposing functional receptors,channels,and transporters on the plasma membrane.In this review,we will underline the importance of studying the Golgi apparatus and the secretory pathway in astrocytes,based on the possible tight connection between the Golgi apparatus and astrocytes’homeostatic function.Given the topic of this review,we will provide examples mostly about the Golgi apparatus structure,function,localization,and its involvement in astrocytes’homeostatic response,with an insight into congenital glycosylation disorders,as an example of a potential future field in the study of astrocyte homeostatic failure and Golgi apparatus alteration.
基金supported by the National Natural Science Foundation of China,Nos.32070989(to YMZ),31872766(to YMZ),81790640(to XLY),and 82070993(to SJW)the grant from Sanming Project of Medicine in Shenzhen,No.SZSM202011015(to XLY)。
文摘Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission are associated with pathophysiological and neurodegenerative disorders,whereas glucagon-like peptide-1 has demonstrated neuroprotective effects.However,it is not yet clear whether diabetes causes alterations in inhibitory input to retinal ganglion cells and whether and how glucagon-like peptide-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to retinal ganglion cells.In the present study,we used the patch-clamp technique to recordγ-aminobutyric acid subtype A receptor-mediated miniature inhibitory postsynaptic currents in retinal ganglion cells from streptozotocin-induced diabetes model rats.We found that early diabetes(4 weeks of hyperglycemia)decreased the frequency of GABAergic miniature inhibitory postsynaptic currents in retinal ganglion cells without altering their amplitude,suggesting a reduction in the spontaneous release ofγ-aminobutyric acid to retinal ganglion cells.Topical administration of glucagon-like peptide-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency,subsequently enhancing the survival of retinal ganglion cells.Concurrently,the protective effects of glucagon-like peptide-1 on retinal ganglion cells in diabetic rats were eliminated by topical administration of exendin-9-39,a specific glucagon-like peptide-1 receptor antagonist,or SR95531,a specific antagonist of theγ-aminobutyric acid subtype A receptor.Furthermore,extracellular perfusion of glucagon-like peptide-1 was found to elevate the frequencies of GABAergic miniature inhibitory postsynaptic currents in both ON-and OFF-type retinal ganglion cells.This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of glucagon-like peptide-1 receptor activation.Moreover,multielectrode array recordings revealed that glucagon-like peptide-1 functionally augmented the photoresponses of ON-type retinal ganglion cells.Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of glucagon-like peptide-1.These results suggest that glucagon-like peptide-1 facilitates the release ofγ-aminobutyric acid onto retinal ganglion cells through the activation of glucagon-like peptide-1 receptor,leading to the de-excitation of retinal ganglion cell circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy.Collectively,our findings indicate that theγ-aminobutyric acid system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy.Furthermore,the topical administration of glucagon-like peptide-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
文摘The aim of this paper is to give some analytic functions which are related to the generating functions for the central factorial numbers. By using these functions and p-adic Volkenborn integral, we derive many new identities associated with the Bernoulli and Euler numbers, the central factorial numbers and the Stirling numbers. We also give some remarks and comments on these analytic functions, which are related to the generating functions for the special numbers.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
文摘Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models–the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.
文摘In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to Dynamical system in a new Double-Chain Model of DNA and a diffusive predator-prey system which play an important role in biology.
基金supported by the National Natural Science Foundation of China,No.82371399(to YY)the Natural Science Foundation of Jiangsu Province,No.BK20221206(to YY)+1 种基金the Young Elite Scientists Sponsorship Program of Jiangsu Province,No.TJ-2022-028(to YY)the Scientific Research Program of Wuxi Health Commission,No.Z202302(to LY)。
文摘Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functional recovery after brain injury.Neuromodulation technologies represent one of the fastest-growing fields in medicine.These techniques utilize electricity,magnetism,sound,and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury.Therefore,this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury.Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury.However,studies report negative findings,potentially due to variations in stimulation protocols,differences in observation periods,and the severity of functional impairments among participants across different clinical trials.Additionally,we observed that different neuromodulation techniques share remarkably similar mechanisms,including promoting neuroplasticity,enhancing neurotrophic factor release,improving cerebral blood flow,suppressing neuroinflammation,and providing neuroprotection.Finally,considering the advantages and disadvantages of various neuromodulation techniques,we propose that future development should focus on closed-loop neural circuit stimulation,personalized treatment,interdisciplinary collaboration,and precision stimulation.
文摘The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis.Macrophage generation of oxysterol activators of liver X receptors(LXRs),via sterol 27-hydroxylase,is regulated by the rate of flux of cholesterolto the inner mitochondrial membrane,via a complex of cholesterol trafficking proteins.Oxysterols are key signalling molecules,regulating the transcriptional activity of LXRs which coordinate macrophage sterol metabolism and cytokine production,key features influencing the impact of these cells within atherosclerotic lesions.The precise identity of the complex of proteins mediating mitochondrial cholesterol trafficking in macrophages remains a matter of debate,but may include steroidogenic acute regulatory protein and translocator protein.There is clear evidence that targeting either of these proteins enhances removal of cholesterol via LXRα-dependent induction of ATP binding cassette transporters(ABCA1,ABCG1) and limits the production of inflammatory cytokines; interventions which influence mitochondrial structure and bioenergetics also impact on removal of cholesterol from macrophages.Thus,molecules which can sustain or improve mitochondrial structure,the function of the electron transport chain,or increase the activity of components of the protein complex involved in cholesterol transfer,may therefore have utility in limiting or regressing atheroma development,reducing the incidence of coronary heart disease and myocardial infarction.