Atrazine causes concern due to its resistant to biodegradation and could be accumulated in aquatic organisms,causing pollution in lakes.This study measured the concentration of atrazine in ice and the water under ice ...Atrazine causes concern due to its resistant to biodegradation and could be accumulated in aquatic organisms,causing pollution in lakes.This study measured the concentration of atrazine in ice and the water under ice through a simulated icing experiment and calculated the distribution coefficient K to characterize its migration ability in the freezing process.Furthermore,density functional theory(DFT)calculations were employed to expatiate the migration law of atrazine during icing process.According to the results,it could release more energy into the environment when atrazine staying in water phase(-15.077 kcal/mol)than staying in ice phase(-14.388 kcal/mol),therefore it was beneficial for the migration of atrazine from ice to water.This explains that during the freezing process,the concentration of atrazine in the ice was lower than that in the water.Thermodynamic calculations indicated thatwhen the temperature decreases from268 to 248 K,the internal energy contribution of the compound of atrazine and ice molecule(water cluster)decreases at the same vibrational frequency,resulting in an increase in the free energy difference of the compound from-167.946 to-165.390 kcal/mol.This demonstrated the diminished migratory capacity of atrazine.This study revealed the environmental behavior of atrazine during lake freezing,which was beneficial for the management of atrazine and other pollutants during freezing and environmental protection.展开更多
To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time ca...To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time calculation of the running state. The accurate coupled mathematical models under different internal fault conditions of the LSM are derived based on the normal model. Then the fault currents and electromagnetic forces are simulated and calculated for the major potential internal faults of the LSM, such as the single-phase short circuit, the phase-phase short circuit and the single-phase open circuit. The characteristic curve between the electromagnetic force and the armature current of the LSM, which is compared with the results from the finite element method, proves the validation of the proposed method. The fault rule is determined and the proposed analytical model also shows its feasibility in the fast fault diagnosis through the comparison of the simulation results of currents and electromagnetic forces under different internal fault types and short circuit ratios.展开更多
Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N- oxides with different energetic substituent groups (-NH2, -Na, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-C...Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N- oxides with different energetic substituent groups (-NH2, -Na, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-CH2-, -NH-, -N=N-, -NH-NH-) were designed. The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods. The results showed that most of designed compounds have oxygen balance around zero, high heats of formation, high density, high energy, and acceptable sensitivity, indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds, even only combined with some very common energetic substituent groups and bridge groups. Comprehensively considering the effects on energy and sensitivity, the -NO2, -NF2, -NH- and-NH-NH- are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds, while -NH2, -Na, -CH2-CH2-, and -N=N- are inappropriate.展开更多
The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory ...The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory (DFT). The calculated results reveal that due to the hole doping, the Fermi level shifts into valence bands (VBs) for SrTi1-x InxO3 with x = 0.125 and the system exhibits p-type degenerate semiconductor features. It is suggested according to the density of states (DOS) of SrTi0.875In0.125O3 that the band structure of p-type SrTIO3 can be described by a rigid band model. At the same time, the DOS shifts towards high energies and the optical band gap is broadened. The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the film. The optical transmittance of In doped SrTiO3 is higher than 85% in a visible region, and the transmittance improves greatly. And the cut-off wavelength shifts into a blue-light region with the increase of In doping concentration.展开更多
Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum ...Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum resource. However, development of robust catalyst with controllable selectivity and stability remains a challenge. Herein, we report that Zn-promoted Fe catalyst can boost the stable and selective production of light olefins from CO_(2). Specifically, the Zn-promoted Fe exhibits a highly stable activity and olefin selectivity over 200 h time-on-stream compared to the unpromoted Fe catalyst, primarily owing to the preservation of active χ-Fe_(5)C_(2) phase. Structural characterizations of the spent catalysts suggest that Zn substantially regulates the content of iron carbide on the surface and suppresses the reoxidation of bulk iron carbide during the reaction. DFT calculations confirm that adsorption of surface carbon atoms and graphene-like carbonaceous species are not thermochemically favored on Zn-promoted Fe catalyst. Carbon deposition by CAC coupling reactions of two surface carbon atoms and dehydrogenation of CH intermediate are also inhibited. Furthermore, the effects of Zn on antioxidation of iron carbide were also investigated. Zn favored the hydrogenation of surface adsorbed oxygen atoms to H_(2)O and the desorption of H_(2)O, which reduces the possibility of surface carbide being oxidized by the chemisorbed oxygen.展开更多
Density function theory (DFT) at the B3LYP/6- 311 + + G(2d) (5D, 7F) level of theory was calculated to predict the geometry structures, toted energy and net charges of four kinds of dynamic isomer molecules of...Density function theory (DFT) at the B3LYP/6- 311 + + G(2d) (5D, 7F) level of theory was calculated to predict the geometry structures, toted energy and net charges of four kinds of dynamic isomer molecules of 2-aminino-5 mercapto- 1,3,4-thiodizole ( AA/IT for short). The fact that the atoms in four kinds of dynamie AMT isomer molecules lie in a plane and one kind of AMT is most stable is approved. The results also indicate that the pentogon ring in four kinds of dynamic AMT isomer molecules are aromatics, and the AMTc and Cu corrosion mitigation film produces as a result of the bonds form one by one of the covalent bond of Cu(1) with 7 N atom in AMTc amd the coordinate bond of Cu with 2S atom in ATMc. The resonant vibration frequencies and IR intensity for the four kituds of dynamic isomer of AMT are also calculated and their IR spectra are shown.展开更多
In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the ...In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the calculations. The results show that the binding energies, frequencies, coordination numbers and average bond lengths are in reasonable agreement with reported experimental data. Moreover, four isomers of the Cu5 cluster are obtained according to calculations, in which the most stable configuration is the planar structure. Meanwhile, two three-dimensional structures of the Cu5 cluster are obtained in this work, which might be valuable for further theoretical and experimental studies. In addition, our study proves the possibility of the isomer structures of the Cu5 cluster.展开更多
This paper investigates the effect of Nb doping on the electronic structure and optical properties of Sr2TiO4 by the first-principles calculation of plane wave ultra-soft pseudo-potential based on density functional t...This paper investigates the effect of Nb doping on the electronic structure and optical properties of Sr2TiO4 by the first-principles calculation of plane wave ultra-soft pseudo-potential based on density functional theory (DFT).The calculated results reveal that due to the electron doping,the Fermi level shifts into conduction bands(CBs) for Sr2NbxTi1-xO4 with x=0.125 and the system shows n-type degenerate semiconductor features. Sr2TiO4 exhibits optical anisotropy in its main crystal axes,and the c-axis shows the most suitable crystal growth direction for obtaining a wide transparent region.The optical transmittance is higher than 90% in the visible range for Sr2Nb0.125Ti0.875O4.展开更多
In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent per...In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent performance.Herein,different adsorption configurations and active sites of the intermediates,involved in the HCOOH decomposition,on WC(0001)-supported Pd monolayer(Pd/WC(0001))surface investigated by using density functional theory.The results reveal that trans-HCOOH,HCOO,cis-COOH,trans-COOH,HCO,CO,H2 O,OH and H exhibit chemisorption on Pd/WC(0001)surface,whereas cis-HCOOH and CO2 exhibit weak interactions with Pd/WC(0001)surface.In addition,the minimum energy pathways of HCOOH decomposition are analyzed to generate CO and CO2 due to the fracture of C–H,H–O and C–O bonds.The adsorbed HCOOH,HCOO,mH COO,cis-COOH and trans-COOH configurations exhibit dissociation rather than desorption.CO formation occurs through the decomposition of cis-COOH,trans-COOH and HCO,whereas the CO2 formation happens due to the decomposition of HCOO.It is found that the most favorable pathway for HCOOH decomposition on Pd/WC(0001)surface is HCOOH→HCOO→CO2,where the formation of CO2 from HCOO dehydrogenation determines the reaction rate.Overall,CO2 is the most dominant product of HCOOH decomposition on Pd/WC(0001)surface.The presence of WC,as monolayer Pd carrier,does not alter the catalytic behavior of Pd and significantly reduces the Pd utilization.展开更多
We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2,SrN2 and BaN2.The ground state properties of three alkaline earth diazenid...We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2,SrN2 and BaN2.The ground state properties of three alkaline earth diazenides were obtained,and these were in good agreement with previous experimental and theoretical data.By using the quasi-harmonic Debye model,the thermodynamic properties including the debye temperature ΘD,thermal expansion coefficient α,and gruneisen parameter y are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa,respectively.The optical properties including dielectric function ε(ω),absorption coefficient α(ω),reflectivity coefficient R(ω),and refractive index n(ω) are also calculated and analyzed.展开更多
By studying the relationship between physical structure and function in physical chemistry, the author breaks through the limitation of the western narrow social and cultural structure and function theory, and further...By studying the relationship between physical structure and function in physical chemistry, the author breaks through the limitation of the western narrow social and cultural structure and function theory, and further derives and founds the Confucian cultural structure and function theory, thus creating a new research methodology and broadening the research horizon. Through the research, it is found that the Confucian culture structure consists of the hard structure "ritual" and the soft structure "benevolence", and based on this constructs three-outline, five- principal, four-moral, eight- virtul, five cardinal principals and other Confucian culture, so that these have a social management function, resulting in a 2000-year stable Chinese social order, which also provides reference for the social management of Chinese government today.展开更多
We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic ligh...We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.展开更多
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr...By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.展开更多
Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of C...Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of Cu-BTC, a copper-based MOF, and its derivatives Cu TM-BTC via the substitution of transition metal(TM) elements at the Cu site for photocatalytic overall water splitting(POWS) have been studied. POWS of Cu-BTC suffers from the sluggish hydrogen evolution reaction due to the large overpotential of 2.02 V and limited solar utilization due to a wide HOMO-LUMO gap of 4.11 e V. Via TM substitution, the HOMO-LUMO gap narrows but still satisfies the redox potentials when taken 3d-TM of Cr, Fe, Co or Ni, 4d-TM of Rh or Pd, or 5d-TM of Re or Pt into consideration, benefiting for the light absorption. Furthermore, Cr and Re could serve as active sites for hydrogen evolution with remarkably lowered overpotentials of 0.79 V and 0.28 V, respectively;similarly, oxygen evolution activities could be enhanced by Fe, Co and Rh because of their reduced overpotentials which are less than 0.5 V. Therefore,our findings pave guidance for designing Cu-BTC derivatives in overall water splitting.展开更多
A sparsely introduced basal intrinsic 2-type stacking fault(I_(2)-SF)with a dense segregation of clusters(cluster-arranged layer;CAL)inα-Mg exerts a sufficient strengthening effect with a reduced content of additive ...A sparsely introduced basal intrinsic 2-type stacking fault(I_(2)-SF)with a dense segregation of clusters(cluster-arranged layer;CAL)inα-Mg exerts a sufficient strengthening effect with a reduced content of additive elements.Moreover,the dynamic nucleation and growth of CALs during deformation largely improves the creep resistance.This paper analyzes the cosegregation behaviors of yttrium(Y)and zinc(Zn)atoms at an I_(2)-SF in bulk and at basal edge dislocations using density functional theory calculations.We also study the modification of the generalized stacking-fault energy(GSFE)curves associated with the cosegregation.The segregation energies of Y and Zn atoms in the I_(2)-SF are relatively small during the initial segregation of a cluster,but increases stepwise as the cluster grows.After introducing Y and Zn atoms in the I_(2)-SF in an energetically stable order,we obtain an L1_(2)-type cluster resembling that reported in the literature.Small structural changes driven by vacancy diffusion produce an exact L1_(2)-type cluster.Meanwhile,the core of the Shockley partial dislocation generates sufficient segregation energy for cluster nucleation.Migration of the Shockley partial dislocation and expansion of the I_(2)-SF part are observed at a specific cluster size.The migration is triggered by a large modification of the GSFE curve and destabilization of the hexagonal close-packed stacking(hcp)by the segregated atoms.At this point,the cluster has reached sufficient size and continues to follow the growth in the I_(2)-SF part.According to our findings,the CAL at elevated temperature is formed through repeated synchronized behavior of cluster nucleation at the Shockley partial dislocation,dislocation migration triggered by the destabilized hcp stacking,and following of cluster growth in the I_(2)-SF part of the dislocation.展开更多
Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combinin...Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combining electrochemical workstation and Raman spectroscopy,and Density Dunctional Theory(DFT)calculations were employed.The surface morphologies,alloying elements,molecular fingerprint Raman evidence and theoretical mechanism for the localized corrosion of 304 stainless steel during the electrochemical polarization in the mixture solutions containing 0.5 mol/L H_(2)SO_(4) and 2,2'-bipyridine(bipy)with concentrations of 0.001,0.010,0.100 mol/L were discussed.In comparison,the presence of bipy up to 0.100 mol/L in such mixture solutions displayed the neglectable effect on the Fe(Ⅱ)/Fe(Ⅲ)reaction in the polarization process.Raman vibrational frequency around 1492 cm^(-1)was the evidence of pink color appearance due to the formation of[Fe^(Ⅱ)(bipy)_(3)]^(2+).Raman and DFT indicated the yellow color emergence due to the presence ofμ-O-[Fe^(Ⅲ)(bipy)_(2)(H_(2)O)]_(2)^(4+)due to the oxidation reaction of[Fe^(Ⅱ)(bipy)_(3)]^(2+)with H_(2)O_(2) oxidant,and the dimerization of[Fe^(Ⅲ)(bipy)_(3)]^(3+),Furthermore,a quantitative model between[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentration and Raman intensity at 1492 cm^(-1) has been built up.Two linear functions were revealed when[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentrations were at 0-0.002 mol/L and 0.002-0.004 mol/L and a concentration error of less than 5%was evidenced in comparison with that investigated by the inductively coupled plasma.The proposed passivation mechanism and quantitative concentration model of 304 stainless steel have certain significance for its corrosion protection andcorrosionevaluation.展开更多
The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous flui...The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous fluid density distributions over time.It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems.The Sunway Bluelight II supercomputer,as a new generation of China’s developed supercomputer,possesses powerful computational capabilities.Porting and optimizing industrial software on this platform holds significant importance.For the optimization of the DDFT algorithm,based on the Sunway Bluelight II supercomputer and the unique hardware architecture of the SW39000 processor,this work proposes three acceleration strategies to enhance computational efficiency and performance,including direct parallel optimization,local-memory constrained optimization for CPEs,and multi-core groups collaboration and communication optimization.This method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway Bluelight II supercomputer,optimizing the storage and transmission structures to achieve a closer integration of software and hardware.For the first time,this paper presents Sunway-Dynamical Density Functional Theory(SW-DDFT).Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group compared to the original DDFT implementation,with six core groups(a total of 384 CPEs),the maximum speedup can reach 28.64 times,and parallel efficiency can reach 71%,demonstrating excellent acceleration performance.展开更多
Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instr...Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.展开更多
This study explores the molecular design of sulfur-containing polymers with high refractive indices(RI)and optimized Abbe numbers for advanced optical applications.The high molar refraction and low dispersion of sulfu...This study explores the molecular design of sulfur-containing polymers with high refractive indices(RI)and optimized Abbe numbers for advanced optical applications.The high molar refraction and low dispersion of sulfur make it an ideal component for enhancing the optical properties of polymers.Density functional theory(DFT)calculations were employed to predict the RI and Abbe numbers for a range of sulfurbased polymers.To improve the accuracy of the theoretical predictions,a correction function was developed by comparing the calculated values with experimental data.The key polymer families investigated included sulfur-containing polycarbonates,heterocyclic optical resins,and cycloolefins,all modified to balance RI enhancement with dispersion control.The results demonstrate that increasing the sulfur content and introducing specific heterocycles and bridged rings can effectively increase the RI while maintaining desirable Abbe numbers.Polymers incorporating 1,4-dithiane and sulfur-bridged rings exhibit excellent optical clarity and minimal visible light absorption,making them suitable for lens and coating applications.The study also calculated the UV-visible spectra for the most promising polymers,confirming their high transparency.This work establishes a predictive framework for developing high-performance optical polymers and offers a systematic approach for balancing the refractive index and dispersion,thereby providing valuable insights for the design of next-generation optical materials.展开更多
基金This work was supported by the Key Research and Development Program of Shandong Province(No.2019GHY112033)the National Natural Science Foundation of China(No.51609207).
文摘Atrazine causes concern due to its resistant to biodegradation and could be accumulated in aquatic organisms,causing pollution in lakes.This study measured the concentration of atrazine in ice and the water under ice through a simulated icing experiment and calculated the distribution coefficient K to characterize its migration ability in the freezing process.Furthermore,density functional theory(DFT)calculations were employed to expatiate the migration law of atrazine during icing process.According to the results,it could release more energy into the environment when atrazine staying in water phase(-15.077 kcal/mol)than staying in ice phase(-14.388 kcal/mol),therefore it was beneficial for the migration of atrazine from ice to water.This explains that during the freezing process,the concentration of atrazine in the ice was lower than that in the water.Thermodynamic calculations indicated thatwhen the temperature decreases from268 to 248 K,the internal energy contribution of the compound of atrazine and ice molecule(water cluster)decreases at the same vibrational frequency,resulting in an increase in the free energy difference of the compound from-167.946 to-165.390 kcal/mol.This demonstrated the diminished migratory capacity of atrazine.This study revealed the environmental behavior of atrazine during lake freezing,which was beneficial for the management of atrazine and other pollutants during freezing and environmental protection.
文摘To guarantee the safety of the high speed maglev train system, a novel model based on the winding function theory is proposed for the long-stator linear synchronous motor(LSM), which is suitable for the real-time calculation of the running state. The accurate coupled mathematical models under different internal fault conditions of the LSM are derived based on the normal model. Then the fault currents and electromagnetic forces are simulated and calculated for the major potential internal faults of the LSM, such as the single-phase short circuit, the phase-phase short circuit and the single-phase open circuit. The characteristic curve between the electromagnetic force and the armature current of the LSM, which is compared with the results from the finite element method, proves the validation of the proposed method. The fault rule is determined and the proposed analytical model also shows its feasibility in the fast fault diagnosis through the comparison of the simulation results of currents and electromagnetic forces under different internal fault types and short circuit ratios.
基金This work was supported by the Natural Science Foundation of Nanjing Institute of Technology (YKJ201507, CKJA201603) and the Youth Natural Sci- ence Foundation of Jiangsu Province (BK20160774), and Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.
文摘Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N- oxides with different energetic substituent groups (-NH2, -Na, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-CH2-, -NH-, -N=N-, -NH-NH-) were designed. The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods. The results showed that most of designed compounds have oxygen balance around zero, high heats of formation, high density, high energy, and acceptable sensitivity, indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds, even only combined with some very common energetic substituent groups and bridge groups. Comprehensively considering the effects on energy and sensitivity, the -NO2, -NF2, -NH- and-NH-NH- are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds, while -NH2, -Na, -CH2-CH2-, and -N=N- are inappropriate.
基金Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No 2005F06).
文摘The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory (DFT). The calculated results reveal that due to the hole doping, the Fermi level shifts into valence bands (VBs) for SrTi1-x InxO3 with x = 0.125 and the system exhibits p-type degenerate semiconductor features. It is suggested according to the density of states (DOS) of SrTi0.875In0.125O3 that the band structure of p-type SrTIO3 can be described by a rigid band model. At the same time, the DOS shifts towards high energies and the optical band gap is broadened. The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the film. The optical transmittance of In doped SrTiO3 is higher than 85% in a visible region, and the transmittance improves greatly. And the cut-off wavelength shifts into a blue-light region with the increase of In doping concentration.
基金the funding support from Shanghai Sailing Program (19YF1411000)National Natural Science Foundation of China (21878080, 21808058)Ningxia Science Foundation (2019AAC03282)。
文摘Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum resource. However, development of robust catalyst with controllable selectivity and stability remains a challenge. Herein, we report that Zn-promoted Fe catalyst can boost the stable and selective production of light olefins from CO_(2). Specifically, the Zn-promoted Fe exhibits a highly stable activity and olefin selectivity over 200 h time-on-stream compared to the unpromoted Fe catalyst, primarily owing to the preservation of active χ-Fe_(5)C_(2) phase. Structural characterizations of the spent catalysts suggest that Zn substantially regulates the content of iron carbide on the surface and suppresses the reoxidation of bulk iron carbide during the reaction. DFT calculations confirm that adsorption of surface carbon atoms and graphene-like carbonaceous species are not thermochemically favored on Zn-promoted Fe catalyst. Carbon deposition by CAC coupling reactions of two surface carbon atoms and dehydrogenation of CH intermediate are also inhibited. Furthermore, the effects of Zn on antioxidation of iron carbide were also investigated. Zn favored the hydrogenation of surface adsorbed oxygen atoms to H_(2)O and the desorption of H_(2)O, which reduces the possibility of surface carbide being oxidized by the chemisorbed oxygen.
基金Supported by the National Natural Science Foundation ( No.59925412) and Natural Science Foundation of Hunan Province (No.03JJY3015)
文摘Density function theory (DFT) at the B3LYP/6- 311 + + G(2d) (5D, 7F) level of theory was calculated to predict the geometry structures, toted energy and net charges of four kinds of dynamic isomer molecules of 2-aminino-5 mercapto- 1,3,4-thiodizole ( AA/IT for short). The fact that the atoms in four kinds of dynamie AMT isomer molecules lie in a plane and one kind of AMT is most stable is approved. The results also indicate that the pentogon ring in four kinds of dynamic AMT isomer molecules are aromatics, and the AMTc and Cu corrosion mitigation film produces as a result of the bonds form one by one of the covalent bond of Cu(1) with 7 N atom in AMTc amd the coordinate bond of Cu with 2S atom in ATMc. The resonant vibration frequencies and IR intensity for the four kituds of dynamic isomer of AMT are also calculated and their IR spectra are shown.
基金supported by the National Natural Science Foundation of China (Grant No. 10375028)
文摘In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the calculations. The results show that the binding energies, frequencies, coordination numbers and average bond lengths are in reasonable agreement with reported experimental data. Moreover, four isomers of the Cu5 cluster are obtained according to calculations, in which the most stable configuration is the planar structure. Meanwhile, two three-dimensional structures of the Cu5 cluster are obtained in this work, which might be valuable for further theoretical and experimental studies. In addition, our study proves the possibility of the isomer structures of the Cu5 cluster.
基金Project supported by the Natural Science Foundation of ShaanXi Province of China (Grant No 2005F06)Northwest University(NWU) Graduate Innovation and Creativity Funds (Grant No 08YZZ47)
文摘This paper investigates the effect of Nb doping on the electronic structure and optical properties of Sr2TiO4 by the first-principles calculation of plane wave ultra-soft pseudo-potential based on density functional theory (DFT).The calculated results reveal that due to the electron doping,the Fermi level shifts into conduction bands(CBs) for Sr2NbxTi1-xO4 with x=0.125 and the system shows n-type degenerate semiconductor features. Sr2TiO4 exhibits optical anisotropy in its main crystal axes,and the c-axis shows the most suitable crystal growth direction for obtaining a wide transparent region.The optical transmittance is higher than 90% in the visible range for Sr2Nb0.125Ti0.875O4.
基金supported by the National Natural Science Foundation of China(21776259)Key Laboratory of Micro-Nano Powder and Advanced Energy Materials of Anhui Higher Education Institutes,Chizhou University~~
文摘In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent performance.Herein,different adsorption configurations and active sites of the intermediates,involved in the HCOOH decomposition,on WC(0001)-supported Pd monolayer(Pd/WC(0001))surface investigated by using density functional theory.The results reveal that trans-HCOOH,HCOO,cis-COOH,trans-COOH,HCO,CO,H2 O,OH and H exhibit chemisorption on Pd/WC(0001)surface,whereas cis-HCOOH and CO2 exhibit weak interactions with Pd/WC(0001)surface.In addition,the minimum energy pathways of HCOOH decomposition are analyzed to generate CO and CO2 due to the fracture of C–H,H–O and C–O bonds.The adsorbed HCOOH,HCOO,mH COO,cis-COOH and trans-COOH configurations exhibit dissociation rather than desorption.CO formation occurs through the decomposition of cis-COOH,trans-COOH and HCO,whereas the CO2 formation happens due to the decomposition of HCOO.It is found that the most favorable pathway for HCOOH decomposition on Pd/WC(0001)surface is HCOOH→HCOO→CO2,where the formation of CO2 from HCOO dehydrogenation determines the reaction rate.Overall,CO2 is the most dominant product of HCOOH decomposition on Pd/WC(0001)surface.The presence of WC,as monolayer Pd carrier,does not alter the catalytic behavior of Pd and significantly reduces the Pd utilization.
基金Funded by the Natural Science Foundation of Education Committee of Anhui Province(No.KJ2016B003)the National Key Laboratory Fund for Shock Wave and Detonation Physics Research of the China Academy of Engineering Physics(No.9140C671101110C6709)+1 种基金the Defense Industrial Technology Development Program of China(No.B1520110002)the National Basic Research Program of China(No.2010CB731600)
文摘We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2,SrN2 and BaN2.The ground state properties of three alkaline earth diazenides were obtained,and these were in good agreement with previous experimental and theoretical data.By using the quasi-harmonic Debye model,the thermodynamic properties including the debye temperature ΘD,thermal expansion coefficient α,and gruneisen parameter y are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa,respectively.The optical properties including dielectric function ε(ω),absorption coefficient α(ω),reflectivity coefficient R(ω),and refractive index n(ω) are also calculated and analyzed.
文摘By studying the relationship between physical structure and function in physical chemistry, the author breaks through the limitation of the western narrow social and cultural structure and function theory, and further derives and founds the Confucian cultural structure and function theory, thus creating a new research methodology and broadening the research horizon. Through the research, it is found that the Confucian culture structure consists of the hard structure "ritual" and the soft structure "benevolence", and based on this constructs three-outline, five- principal, four-moral, eight- virtul, five cardinal principals and other Confucian culture, so that these have a social management function, resulting in a 2000-year stable Chinese social order, which also provides reference for the social management of Chinese government today.
文摘We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.
基金supported by the National Key R&D Program of China under Grant No.2025YFB3003603the National Natural Science Foundation of China under Grant Nos.12135002 and 12105209.
文摘By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.
基金the financial support from National Natural Science Foundation of China (No. 21503097)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_3905)。
文摘Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of Cu-BTC, a copper-based MOF, and its derivatives Cu TM-BTC via the substitution of transition metal(TM) elements at the Cu site for photocatalytic overall water splitting(POWS) have been studied. POWS of Cu-BTC suffers from the sluggish hydrogen evolution reaction due to the large overpotential of 2.02 V and limited solar utilization due to a wide HOMO-LUMO gap of 4.11 e V. Via TM substitution, the HOMO-LUMO gap narrows but still satisfies the redox potentials when taken 3d-TM of Cr, Fe, Co or Ni, 4d-TM of Rh or Pd, or 5d-TM of Re or Pt into consideration, benefiting for the light absorption. Furthermore, Cr and Re could serve as active sites for hydrogen evolution with remarkably lowered overpotentials of 0.79 V and 0.28 V, respectively;similarly, oxygen evolution activities could be enhanced by Fe, Co and Rh because of their reduced overpotentials which are less than 0.5 V. Therefore,our findings pave guidance for designing Cu-BTC derivatives in overall water splitting.
基金supported by the Japan Science and Technology Agency(JST),CREST(grant number JapanJPR2094)。
文摘A sparsely introduced basal intrinsic 2-type stacking fault(I_(2)-SF)with a dense segregation of clusters(cluster-arranged layer;CAL)inα-Mg exerts a sufficient strengthening effect with a reduced content of additive elements.Moreover,the dynamic nucleation and growth of CALs during deformation largely improves the creep resistance.This paper analyzes the cosegregation behaviors of yttrium(Y)and zinc(Zn)atoms at an I_(2)-SF in bulk and at basal edge dislocations using density functional theory calculations.We also study the modification of the generalized stacking-fault energy(GSFE)curves associated with the cosegregation.The segregation energies of Y and Zn atoms in the I_(2)-SF are relatively small during the initial segregation of a cluster,but increases stepwise as the cluster grows.After introducing Y and Zn atoms in the I_(2)-SF in an energetically stable order,we obtain an L1_(2)-type cluster resembling that reported in the literature.Small structural changes driven by vacancy diffusion produce an exact L1_(2)-type cluster.Meanwhile,the core of the Shockley partial dislocation generates sufficient segregation energy for cluster nucleation.Migration of the Shockley partial dislocation and expansion of the I_(2)-SF part are observed at a specific cluster size.The migration is triggered by a large modification of the GSFE curve and destabilization of the hexagonal close-packed stacking(hcp)by the segregated atoms.At this point,the cluster has reached sufficient size and continues to follow the growth in the I_(2)-SF part.According to our findings,the CAL at elevated temperature is formed through repeated synchronized behavior of cluster nucleation at the Shockley partial dislocation,dislocation migration triggered by the destabilized hcp stacking,and following of cluster growth in the I_(2)-SF part of the dislocation.
基金supported by the National Natural Science Foundation of China(No.51701239)the University-Industry Collaborative Education Program of MOEinChina(No.BINTECH-KJZX-20220831-35)the Basic-Scientific-Research-Business-Fee Supporting Project of Henan Province,China(Nos.2023KY35,2023KY40).
文摘Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combining electrochemical workstation and Raman spectroscopy,and Density Dunctional Theory(DFT)calculations were employed.The surface morphologies,alloying elements,molecular fingerprint Raman evidence and theoretical mechanism for the localized corrosion of 304 stainless steel during the electrochemical polarization in the mixture solutions containing 0.5 mol/L H_(2)SO_(4) and 2,2'-bipyridine(bipy)with concentrations of 0.001,0.010,0.100 mol/L were discussed.In comparison,the presence of bipy up to 0.100 mol/L in such mixture solutions displayed the neglectable effect on the Fe(Ⅱ)/Fe(Ⅲ)reaction in the polarization process.Raman vibrational frequency around 1492 cm^(-1)was the evidence of pink color appearance due to the formation of[Fe^(Ⅱ)(bipy)_(3)]^(2+).Raman and DFT indicated the yellow color emergence due to the presence ofμ-O-[Fe^(Ⅲ)(bipy)_(2)(H_(2)O)]_(2)^(4+)due to the oxidation reaction of[Fe^(Ⅱ)(bipy)_(3)]^(2+)with H_(2)O_(2) oxidant,and the dimerization of[Fe^(Ⅲ)(bipy)_(3)]^(3+),Furthermore,a quantitative model between[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentration and Raman intensity at 1492 cm^(-1) has been built up.Two linear functions were revealed when[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentrations were at 0-0.002 mol/L and 0.002-0.004 mol/L and a concentration error of less than 5%was evidenced in comparison with that investigated by the inductively coupled plasma.The proposed passivation mechanism and quantitative concentration model of 304 stainless steel have certain significance for its corrosion protection andcorrosionevaluation.
基金supported by National Key Research and Development Program of China under Grant 2024YFE0210800National Natural Science Foundation of China under Grant 62495062Beijing Natural Science Foundation under Grant L242017.
文摘The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous fluid density distributions over time.It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems.The Sunway Bluelight II supercomputer,as a new generation of China’s developed supercomputer,possesses powerful computational capabilities.Porting and optimizing industrial software on this platform holds significant importance.For the optimization of the DDFT algorithm,based on the Sunway Bluelight II supercomputer and the unique hardware architecture of the SW39000 processor,this work proposes three acceleration strategies to enhance computational efficiency and performance,including direct parallel optimization,local-memory constrained optimization for CPEs,and multi-core groups collaboration and communication optimization.This method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway Bluelight II supercomputer,optimizing the storage and transmission structures to achieve a closer integration of software and hardware.For the first time,this paper presents Sunway-Dynamical Density Functional Theory(SW-DDFT).Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group compared to the original DDFT implementation,with six core groups(a total of 384 CPEs),the maximum speedup can reach 28.64 times,and parallel efficiency can reach 71%,demonstrating excellent acceleration performance.
基金supported by the Center for Advanced Systems Understanding(CASUS),financed by Germany’s Federal Ministry of Education and Research(BMBF)and the Saxon State Government out of the State Budget approved by the Saxon State Parliamentfunding from the European Research Council(ERC)under the European Union’s Horizon 2022 research and innovation programme(Grant Agreement No.101076233,“PREXTREME”)funding from the European Union’s Just Transition Fund(JTF)within the project Röntgenlaser-Optimierung der Laserfusion(ROLF),Contract No.5086999001,co-financed by the Saxon State Government out of the State Budget approved by the Saxon State Parliament.
文摘Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.
基金supported by the Project of Shenzhen Science and Technology(Nos.JCYJ20210324095210028 and JSGGZD20220822095201003)the Shenzhen University 2035Program for Excellent Research(No.000003011002)the National Natural Science Foundation of China(No.U21A2087)。
文摘This study explores the molecular design of sulfur-containing polymers with high refractive indices(RI)and optimized Abbe numbers for advanced optical applications.The high molar refraction and low dispersion of sulfur make it an ideal component for enhancing the optical properties of polymers.Density functional theory(DFT)calculations were employed to predict the RI and Abbe numbers for a range of sulfurbased polymers.To improve the accuracy of the theoretical predictions,a correction function was developed by comparing the calculated values with experimental data.The key polymer families investigated included sulfur-containing polycarbonates,heterocyclic optical resins,and cycloolefins,all modified to balance RI enhancement with dispersion control.The results demonstrate that increasing the sulfur content and introducing specific heterocycles and bridged rings can effectively increase the RI while maintaining desirable Abbe numbers.Polymers incorporating 1,4-dithiane and sulfur-bridged rings exhibit excellent optical clarity and minimal visible light absorption,making them suitable for lens and coating applications.The study also calculated the UV-visible spectra for the most promising polymers,confirming their high transparency.This work establishes a predictive framework for developing high-performance optical polymers and offers a systematic approach for balancing the refractive index and dispersion,thereby providing valuable insights for the design of next-generation optical materials.