Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s...Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.展开更多
The purpose of this paper is to prove a Holder property about the fractal interpolation function L(x), ω(L,δ)=O(δ~α), and an approximate estimate |f-L|≤2{α(h)+||f||/1-h^(2-D)·h^(2-D)}, where D is a fractal ...The purpose of this paper is to prove a Holder property about the fractal interpolation function L(x), ω(L,δ)=O(δ~α), and an approximate estimate |f-L|≤2{α(h)+||f||/1-h^(2-D)·h^(2-D)}, where D is a fractal dimension of L(x).展开更多
If a vector valued function space with a Hausdorff locally convex topology has a property such that every closed strongly bounded subset is compact, then we name this property Helly's property. In this paper, we...If a vector valued function space with a Hausdorff locally convex topology has a property such that every closed strongly bounded subset is compact, then we name this property Helly's property. In this paper, we show a class of vector valued function spaces with Helly's property and consider convergence of vector measures and best approximations in function spaces in this class.展开更多
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size...It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.展开更多
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced elec...The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.展开更多
Edible mushroom proteins are the promising ones with the advantages of complete essential amino acid profile and multiple functional activities.To reinforce their applications in functional food development,this study...Edible mushroom proteins are the promising ones with the advantages of complete essential amino acid profile and multiple functional activities.To reinforce their applications in functional food development,this study comprehensively evaluated the physicochemical and functional properties of protein isolates from 5 mushroom species,i.e.,Pleurotus eryngii(PEP),Pleurotus ostreatus(POP),Lentinula edodes(LEP),Flammulina velutipes(FVP)and Hypsizygus marmoreus(HMP).Results showed that PEP,LEP,FVP,POP and HMP exhibited better protein solubility(PS),water holding capacity(WHC),emulsification activity index(EAI),and foaming capacity(FC)than those of soybean protein and pea protein isolates(PPI).PEP(51.95%)and POP(49.15%)had a higher amount ofβ-sheet structure.Principal component analysis and correlation analysis showed that the seven proteins could be divided into 3 clusters,and WHC,EAI and FC were significantly positively correlated with PS andβ-sheet.The least gelation concentration of PEP(16%)and FVP(16%)at p H 6.0 and 7.0 was similar to PPI,and PEP showed better hardness,springiness and rheological properties than other proteins gels.Overall,our study showed that 5 edible mushroom proteins possessed excellent functionalities(except for gelling capacity),which provided novel insights on unexploited sources of mushroom proteins used as protein-based foods in the food industry.展开更多
The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ...The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.展开更多
Giant red sea cucumber (Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis.The aim of this study was to evaluate the functional properties of collagen hydrolysates from this...Giant red sea cucumber (Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis.The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species.The degree of hydrolysis (DH),amino acid composition,SDS-PAGE,emulsion activity index (EAI),emulsion stability index (ESI),foam expansion (FE),and foam stability (FS) of hydrolysates were investigated.The effects of pH on the EAI,ESI FE and FS of hydrolysates were also inves-tigated.The results indicated that the β and α1 chains of the collagen were effectively hydrolyzed by trypsin at 50℃ with an En-zyme/Substrate (E/S) ration of 1:20 (w:w).The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin.The hydrolysates had a molecular weight distribution of 1.1 17 kDa,and were abundant in glycine (Gly),proline (Pro),glutamic acid (Glu),alanine (Ala) and hydroxyproline (Hyp) residues.The hydrolysates were fractionated into three fractions (< 3 kDa,3 10 kDa,and > 10 kDa),and the fraction of 3 10 kDa exhibited a higher EAI value than the fraction of > 10 kDa (P<0.05).The fraction of > 10 kDa had higher FE and FS values than other fractions (P<0.05).The pH had an important effect on the EAI,ESI,FE and FS.All the fractions showed undesirable emulsion and forming properties at pH 4.0.Under pH 7.0 and pH 10.0,the 3 10 kDa fraction showed higher EAI value and the fraction of > 10 kDa showed higher FE value,respectively.They are hoped to be utilized as functional ingredients in food and nutraceutical industries.展开更多
It has been reported that fresh edible rice has more bioactive compounds and its protein is easier to digest and has lower hypoallergenic than mature rice. In this paper, the changes in structure and functional proper...It has been reported that fresh edible rice has more bioactive compounds and its protein is easier to digest and has lower hypoallergenic than mature rice. In this paper, the changes in structure and functional properties of proteins at five different stages, including early milky stage(EMS), middle milky stage(MMS), late milky stage(LMS), waxy ripe stage(WS)and ripening stage(RS), during the seed development were investigated. It was found that with the seed developing, the molecular weight of fresh rice protein gradually become larger while the secondary structure changed from the highest content of disordered structure at MMS to the highest content of ordered structure at RS, which affect the surface hydrophobicity and then the functional properties of proteins, including foaming properties, emulsifying properties and oil holding capacity. Fresh rice protein at MMS has the strongest surface hydrophobicity while fresh edible rice protein at RS has the strongest oil holding capability. The results of our study can provide a theoretical basis for the application of fresh rice protein in the food industry and help to develop new fresh edible rice food.展开更多
Three pectin fractions(water-soluble fraction(WSF),chelator-soluble fraction(CSF),and sodium carbonatesoluble fraction(NSF))were obtained from Chinese dwarf cherry(Cerasus humilis)fruits.All of them were branched low ...Three pectin fractions(water-soluble fraction(WSF),chelator-soluble fraction(CSF),and sodium carbonatesoluble fraction(NSF))were obtained from Chinese dwarf cherry(Cerasus humilis)fruits.All of them were branched low methoxylated pectins with an amorphous or partially nanocrystalline nature and eight neutral monosaccharides(arabinose and galactose were most abundant).WSF,CSF and NSF had a degree of methylation(DM)of 35.82%,14.85%and 7.13%,uronic acid(UA)content of 76.02%,83.71%and 69.01%,and total protein content of 2.4%,2.1%and 8.8%,respectively.Their molecular weights were 340.31,330.16 and 141.31 kg/mol,respectively(analyzed by gel permeation chromatography(GPC)).WSF,CSF and NSF exhibited good rheological,thermal,emulsifying,emulsion-stabilizing,water-adsorbing,oil-binding,cholesterol-binding and antioxidant properties.NSF had the highest emulsifying,emulsion stabilizing,water-/oil-/cholesterol-binding and antioxidant capacities,followed by CSF.NSF had the highest viscosity(406.77 m Pa·s),flowability,and resistance to heat-induced changes/damage,which may be related to its lowest polydispersity index,DM and UA content and highest protein content.The three pectin fractions with desirable characteristics can be used as food additives/ingredients and dietary supplements.展开更多
[Objectives] This study was conducted to investigate the drying methods,functional and structure properties of dietary fiber( DF) from peanut shells.[Methods]Peanut shells were used as a raw material to prepare peanut...[Objectives] This study was conducted to investigate the drying methods,functional and structure properties of dietary fiber( DF) from peanut shells.[Methods]Peanut shells were used as a raw material to prepare peanut shell dietary fiber( DF) by hot air drying( HA) and vacuum freeze drying( VF),respectively,and their functional and structural characteristics were compared in detail. [Results]The solubility,water holding capacity,oil holding capacity and swelling capacity of HA-DF and VF-DF were 2. 15 %,7. 63 g/g,7. 73 g/g,10. 35 ml/g and 3. 85 %,14. 98 g/g,15. 25 g/g,15. 85 ml/g,respectively. The total phenol contents were 2. 623 and 5. 173 mg GAE/g,respectively. The IC(50) values of ·OH,O2^-· and DPPH free radicals were 4. 16 and 4. 09 mg/ml,7. 90 and 3. 32 mg/ml,and 3. 19 and 3. 09 mg/ml,respectively. The molecular weight of VF-DF was smaller,and it had narrow molecular weight distribution and denser particles. Electron microscopy showed that VF-DF had a porous network like honeycomb and swelled structure. [Conclusions]This study can provide a theoretical basis for the functional modification and comprehensive utilization of peanut shell dietary fiber.展开更多
MXenes,a new family of functional two-dimensional(2 D) materials,have shown great potential for an extensive variety of applications within the last decade.Atomic defects and functional groups in MXenes are known to h...MXenes,a new family of functional two-dimensional(2 D) materials,have shown great potential for an extensive variety of applications within the last decade.Atomic defects and functional groups in MXenes are known to have a tremendous influence on the functional properties.In this review,we focus on recent progress in the characterization of atomic defects and functional group chemistry in MXenes,and how to control them to directly influence various properties(e.g.,electron transport,Li^(+) adsorption,hydrogen evolution reaction(HER) activity,and magnetism) of 2 D MXenes materials.Dynamic structural transformations such as oxidation and growth induced by atomic defects in MXenes are also discussed.The review thus provides perspectives on property optimization through atomic defect engineering,and bottom-up synthesis methods based on defect-assisted homoepitaxial growth of MXenes.展开更多
The contact problem for thermoelectric materials with functionally graded properties is considered.The material properties,such as the electric conductivity,the thermal conductivity,the shear modulus,and the thermal e...The contact problem for thermoelectric materials with functionally graded properties is considered.The material properties,such as the electric conductivity,the thermal conductivity,the shear modulus,and the thermal expansion coefficient,vary in an exponential function.Using the Fourier transform technique,the electro-thermoelastic problems are transformed into three sets of singular integral equations which are solved numerically in terms of the unknown normal electric current density,the normal energy flux,and the contact pressure.Meanwhile,the complex homogeneous solutions of the displacement fields caused by the gradient parameters are simplified with the help of Euler’s formula.After addressing the non-linearity excited by thermoelectric effects,the particular solutions of the displacement fields can be assessed.The effects of various combinations of material gradient parameters and thermoelectric loads on the contact behaviors of thermoelectric materials are presented.The results give a deep insight into the contact damage mechanism of functionally graded thermoelectric materials(FGTEMs).展开更多
Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the...Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties.展开更多
Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pu...Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
This study aimed to analyze the effect of lipid peroxidation on the allergenicity and functional properties of soybeanβ-conglycinin(7 S)and glycinin(11 S).Oxidation complexes were determined using the lipid peroxidat...This study aimed to analyze the effect of lipid peroxidation on the allergenicity and functional properties of soybeanβ-conglycinin(7 S)and glycinin(11 S).Oxidation complexes were determined using the lipid peroxidation method.Functional properties were analyzed based on emulsifying and foaming properties.The potential allergenicity was evaluated by in vitro and in vivo methods.The results found that oxidation altered structures of the proteins and resulted in the formation of cross-linked protein polymers.The emulsion and foaming properties of the proteins were improved after oxidation.The IgE-binding capacity of 7 S and11 S reduced after oxidation.KU812 cell assays showed that both histamine and IL-4 release decreased after oxidation treatment.A mouse model showed that oxidation reduced the IgE,IgG,and IgG1 levels,as well as reduced histamine and mMCP-1 release in serum,which might suppress the allergic reaction.In conclusion,the lipid peroxidation treatment likely causes changes to the functional properties of soybean,decreasing the potential allergenicity of 7 S and 11 S.展开更多
To simplify the assessment method of soy protein isolate (SPI) functionalities, the viscosity and functionalities of commercial SPI products were studied. Viscosity value (y) increases With increasing concentrati...To simplify the assessment method of soy protein isolate (SPI) functionalities, the viscosity and functionalities of commercial SPI products were studied. Viscosity value (y) increases With increasing concentration (x) and exhibits a highly significant correlation with the exponential equation y = a. ebx. The b values of products are gradually enhanced from dispersion, emulsion and injected to gel type. Products with low b values (〈0.2), and high dispersivity were dispersion-type. Products having high b values (〉0.4) and gel springiness were gel-type. The other products with centered b value (0.2-0.4), high solubility and emulsifying capacity were emulsion-type.展开更多
Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified ...Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified by dry heat glycation of galactooligosaccharides(GOS). The gel properties, antioxidant properties and structural changes of SPI-GOS conjugates were investigated. The application of SPI-GOS conjugates in noodles was also explored. The results observed that the glycation degree of SPI increased with the increasing reaction time. SDS-PAGE and spectral analysis showed the changes of spatial conformation of SPI after glycation. The antioxidant activity of SPI increased after glycation and DPPH radical scavenging activity of SPI-GOS peaked at 48 h of reaction. The hardness, elasticity and resilience of soybean protein gel reached their relative maximum at 48 h, 48 h and 12 h of glycation reaction, respectively. Moreover, the appropriate addition of glycated SPI improved the quality of noodles. The noodles with 4% addition of SPI-GOS had higher hardness, elasticity and tensile properties. This study will provide an effective method to modify soybean protein and expand the use of soybean protein in food industry.展开更多
HPP (high pressure processing) is one of the novel technologies to produce microbiologically safe food. HPP is a non-thermal food processing method, wherein the food is subjected to a very high pressure ranging betw...HPP (high pressure processing) is one of the novel technologies to produce microbiologically safe food. HPP is a non-thermal food processing method, wherein the food is subjected to a very high pressure ranging between 100-800 MPa in order to prevent undesirable chemical and microbiological reactions, and hence, prolong the shelf-life. HPP is also called as "high hydrostatic processing, ultra-high pressure processing or isostatic processing". In dairy products, HHP has the potential to modify the functional properties of proteins, polysaccharides and alter biochemical reactions without significantly affecting the nutritional and sensory properties. HPP treatment induces significant changes in milk components particularly in proteins (whey proteins and caseins), as well as on their applicability in innovative dairy productions. HPP influences technological properties of various milk products such as firmness, water-holding capacity of the gel and network structure, cheese yield, rennet coagulation time and ripening.展开更多
The present investigation was aimed to study functional properties,antioxidant activity and in-vitro digestibility characteristics of brown and polished flours obtained from four rice cultivars(SR-4,K-39,Mushq Budij a...The present investigation was aimed to study functional properties,antioxidant activity and in-vitro digestibility characteristics of brown and polished flours obtained from four rice cultivars(SR-4,K-39,Mushq Budij and Zhag)of Kashmir.Brown rice flours had higher total dietary fibre(3.08%-3.68%),oil absorption(116.0%-139.0%),emulsion capacity(4.78%-9.52%),emulsion stability(87.46%-99.93%)and resistant starch content(6.80%-9.00%)than polished flours.However,polished flours presented greater water absorption(102.0%-122.0%),foaming capacity(8.00%-13.63%),apparent amylose(19.16%-22.62%),peak(2260.0-2408.0 cP),trough(1372.0-1589.0 cP)and breakdown(714.0-978.0 cP)viscosities than their brown counterparts.Brown rice flours depicted highest total phenolic content(4.40-6.40 mg GAE/g)and inhibition of lipid peroxidation(19.50%-33.20%).However,equilibrium starch hydrolysis percentage(C∞)and predicted glycemic index of brown rice flours were lower than their polished counterparts.Among rice cultivars,brown Zhag flour had the highest total dietary fibre(3.68%),emulsion capacity(9.52%),emulsion stability(99.93%),resistant starch(9.00%),DPPH radical scavenging activity(85.45%)and inhibition of lipid peroxidation(33.20%),respectively.Emulsion capacity and emulsion stability were positively correlated with protein content of rice flours.However,peak,trough,breakdown and setback viscosities were negatively correlated with protein and fat contents of rice flour.The present investigation will be helpful in identifying nutritive role of rice flours from studied cultivars in human diet.展开更多
基金supported by Deutsche Forschungsgemeinschaft,German Research Foundation grant GA 654/13-2 to OG.
文摘Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.
文摘The purpose of this paper is to prove a Holder property about the fractal interpolation function L(x), ω(L,δ)=O(δ~α), and an approximate estimate |f-L|≤2{α(h)+||f||/1-h^(2-D)·h^(2-D)}, where D is a fractal dimension of L(x).
文摘If a vector valued function space with a Hausdorff locally convex topology has a property such that every closed strongly bounded subset is compact, then we name this property Helly's property. In this paper, we show a class of vector valued function spaces with Helly's property and consider convergence of vector measures and best approximations in function spaces in this class.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation (Grant No.2022M712243)the Fundamental Research Funds for the Central Universities (Grant No.2023SCU12098).
文摘It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.
基金Supported by the National Natural Science Foundation of China (Grant No.22002031)the Natural Science Foundation of Zhejiang Province (Grant No.LY18F010019)the Innovation Project in Hangzhou for Returned Scholar。
文摘The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.
基金supported by the special fund of Jiangsu Province for the transformation of scientific and technological achievements(BA2021062)Jiangsu agricultural science and technology independent innovation fund(CX(22)2007)。
文摘Edible mushroom proteins are the promising ones with the advantages of complete essential amino acid profile and multiple functional activities.To reinforce their applications in functional food development,this study comprehensively evaluated the physicochemical and functional properties of protein isolates from 5 mushroom species,i.e.,Pleurotus eryngii(PEP),Pleurotus ostreatus(POP),Lentinula edodes(LEP),Flammulina velutipes(FVP)and Hypsizygus marmoreus(HMP).Results showed that PEP,LEP,FVP,POP and HMP exhibited better protein solubility(PS),water holding capacity(WHC),emulsification activity index(EAI),and foaming capacity(FC)than those of soybean protein and pea protein isolates(PPI).PEP(51.95%)and POP(49.15%)had a higher amount ofβ-sheet structure.Principal component analysis and correlation analysis showed that the seven proteins could be divided into 3 clusters,and WHC,EAI and FC were significantly positively correlated with PS andβ-sheet.The least gelation concentration of PEP(16%)and FVP(16%)at p H 6.0 and 7.0 was similar to PPI,and PEP showed better hardness,springiness and rheological properties than other proteins gels.Overall,our study showed that 5 edible mushroom proteins possessed excellent functionalities(except for gelling capacity),which provided novel insights on unexploited sources of mushroom proteins used as protein-based foods in the food industry.
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325004 and 52161160330)the National Natural Science Foundation of China (Grants No.12504233)+2 种基金Advanced MaterialsNational Science and Technology Major Project (Grant No.2024ZD0606900)the Talent Hub for “AI+New Materials” Basic Researchthe Key Research and Development Program of Ningbo (Grant No.2025Z088)。
文摘The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.
基金supported by the National Key Technology Research and Development Program of China (Grant No.2006BAD30B01)the Research Award Fund for Excellent Young Scientist of Shandong Province,China (Grant No.BS2009HZ005)
文摘Giant red sea cucumber (Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis.The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species.The degree of hydrolysis (DH),amino acid composition,SDS-PAGE,emulsion activity index (EAI),emulsion stability index (ESI),foam expansion (FE),and foam stability (FS) of hydrolysates were investigated.The effects of pH on the EAI,ESI FE and FS of hydrolysates were also inves-tigated.The results indicated that the β and α1 chains of the collagen were effectively hydrolyzed by trypsin at 50℃ with an En-zyme/Substrate (E/S) ration of 1:20 (w:w).The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin.The hydrolysates had a molecular weight distribution of 1.1 17 kDa,and were abundant in glycine (Gly),proline (Pro),glutamic acid (Glu),alanine (Ala) and hydroxyproline (Hyp) residues.The hydrolysates were fractionated into three fractions (< 3 kDa,3 10 kDa,and > 10 kDa),and the fraction of 3 10 kDa exhibited a higher EAI value than the fraction of > 10 kDa (P<0.05).The fraction of > 10 kDa had higher FE and FS values than other fractions (P<0.05).The pH had an important effect on the EAI,ESI,FE and FS.All the fractions showed undesirable emulsion and forming properties at pH 4.0.Under pH 7.0 and pH 10.0,the 3 10 kDa fraction showed higher EAI value and the fraction of > 10 kDa showed higher FE value,respectively.They are hoped to be utilized as functional ingredients in food and nutraceutical industries.
基金the financial support from the Postdoctoral Research Project of Heilongjiang Provincial Department of Human Resources and Social Security (LBH-Q21156)Heilongjiang BaYi Agricultural University Support Program for San Zong San Heng (ZDZX202104)+3 种基金Science Foundation Project of Heilongjiang Province (QC2015028)National Natural Science Foundation of China (32072258)Major Science and technology Program of Heilongjiang (2019ZX08B02,2020ZX08B02)Central financial support for the development of local colleges and universities,Graduate research and innovation project of Harbin University of Commerce (YJSCX2020636HSD)。
文摘It has been reported that fresh edible rice has more bioactive compounds and its protein is easier to digest and has lower hypoallergenic than mature rice. In this paper, the changes in structure and functional properties of proteins at five different stages, including early milky stage(EMS), middle milky stage(MMS), late milky stage(LMS), waxy ripe stage(WS)and ripening stage(RS), during the seed development were investigated. It was found that with the seed developing, the molecular weight of fresh rice protein gradually become larger while the secondary structure changed from the highest content of disordered structure at MMS to the highest content of ordered structure at RS, which affect the surface hydrophobicity and then the functional properties of proteins, including foaming properties, emulsifying properties and oil holding capacity. Fresh rice protein at MMS has the strongest surface hydrophobicity while fresh edible rice protein at RS has the strongest oil holding capability. The results of our study can provide a theoretical basis for the application of fresh rice protein in the food industry and help to develop new fresh edible rice food.
文摘Three pectin fractions(water-soluble fraction(WSF),chelator-soluble fraction(CSF),and sodium carbonatesoluble fraction(NSF))were obtained from Chinese dwarf cherry(Cerasus humilis)fruits.All of them were branched low methoxylated pectins with an amorphous or partially nanocrystalline nature and eight neutral monosaccharides(arabinose and galactose were most abundant).WSF,CSF and NSF had a degree of methylation(DM)of 35.82%,14.85%and 7.13%,uronic acid(UA)content of 76.02%,83.71%and 69.01%,and total protein content of 2.4%,2.1%and 8.8%,respectively.Their molecular weights were 340.31,330.16 and 141.31 kg/mol,respectively(analyzed by gel permeation chromatography(GPC)).WSF,CSF and NSF exhibited good rheological,thermal,emulsifying,emulsion-stabilizing,water-adsorbing,oil-binding,cholesterol-binding and antioxidant properties.NSF had the highest emulsifying,emulsion stabilizing,water-/oil-/cholesterol-binding and antioxidant capacities,followed by CSF.NSF had the highest viscosity(406.77 m Pa·s),flowability,and resistance to heat-induced changes/damage,which may be related to its lowest polydispersity index,DM and UA content and highest protein content.The three pectin fractions with desirable characteristics can be used as food additives/ingredients and dietary supplements.
基金Supported by Tangshan Science Project (19150204E)。
文摘[Objectives] This study was conducted to investigate the drying methods,functional and structure properties of dietary fiber( DF) from peanut shells.[Methods]Peanut shells were used as a raw material to prepare peanut shell dietary fiber( DF) by hot air drying( HA) and vacuum freeze drying( VF),respectively,and their functional and structural characteristics were compared in detail. [Results]The solubility,water holding capacity,oil holding capacity and swelling capacity of HA-DF and VF-DF were 2. 15 %,7. 63 g/g,7. 73 g/g,10. 35 ml/g and 3. 85 %,14. 98 g/g,15. 25 g/g,15. 85 ml/g,respectively. The total phenol contents were 2. 623 and 5. 173 mg GAE/g,respectively. The IC(50) values of ·OH,O2^-· and DPPH free radicals were 4. 16 and 4. 09 mg/ml,7. 90 and 3. 32 mg/ml,and 3. 19 and 3. 09 mg/ml,respectively. The molecular weight of VF-DF was smaller,and it had narrow molecular weight distribution and denser particles. Electron microscopy showed that VF-DF had a porous network like honeycomb and swelled structure. [Conclusions]This study can provide a theoretical basis for the functional modification and comprehensive utilization of peanut shell dietary fiber.
基金supported by the National Natural Science Foundation of China(No.51902237)the Fundamental Research Funds for the Central Universities of China(No.WUT:2019III012GX)+1 种基金Nanostructure Research Center(NRC),and Center for Materials Analysis and Testing at Wuhan University of TechnologyA portion of this work was supported by the Fluid Interface Reactions,Structures and Transport(FIRST)Center,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences(RRU)。
文摘MXenes,a new family of functional two-dimensional(2 D) materials,have shown great potential for an extensive variety of applications within the last decade.Atomic defects and functional groups in MXenes are known to have a tremendous influence on the functional properties.In this review,we focus on recent progress in the characterization of atomic defects and functional group chemistry in MXenes,and how to control them to directly influence various properties(e.g.,electron transport,Li^(+) adsorption,hydrogen evolution reaction(HER) activity,and magnetism) of 2 D MXenes materials.Dynamic structural transformations such as oxidation and growth induced by atomic defects in MXenes are also discussed.The review thus provides perspectives on property optimization through atomic defect engineering,and bottom-up synthesis methods based on defect-assisted homoepitaxial growth of MXenes.
基金supported by the National Natural Science Foundation of China(Nos.11972257,11832014,11762016,11472193)the Fundamental Research Funds for the Central Universities(No.22120180223)。
文摘The contact problem for thermoelectric materials with functionally graded properties is considered.The material properties,such as the electric conductivity,the thermal conductivity,the shear modulus,and the thermal expansion coefficient,vary in an exponential function.Using the Fourier transform technique,the electro-thermoelastic problems are transformed into three sets of singular integral equations which are solved numerically in terms of the unknown normal electric current density,the normal energy flux,and the contact pressure.Meanwhile,the complex homogeneous solutions of the displacement fields caused by the gradient parameters are simplified with the help of Euler’s formula.After addressing the non-linearity excited by thermoelectric effects,the particular solutions of the displacement fields can be assessed.The effects of various combinations of material gradient parameters and thermoelectric loads on the contact behaviors of thermoelectric materials are presented.The results give a deep insight into the contact damage mechanism of functionally graded thermoelectric materials(FGTEMs).
基金The National Natural Science Foundation of China(12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation(2022M712243)the Fundamental Research Funds for the Central Universities(2023SCU12098)are acknowledged.
文摘Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.11674161,11174122 and 11134004)the Six Big Talent Peak Project from Jiangsu Province(Grant No.XCL-004)open project of National Laboratory of Solid State Microstructures,Nanjing University(Grant No.M28026)
文摘Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金supported in part by the National Natural Science Foundation of China(32172311)Key-Area Research and Development Program of Guangdong Province(2019B020213001)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515012413)the support from the Instrumental Analysis Center of Shenzhen University(Xili Campus)。
文摘This study aimed to analyze the effect of lipid peroxidation on the allergenicity and functional properties of soybeanβ-conglycinin(7 S)and glycinin(11 S).Oxidation complexes were determined using the lipid peroxidation method.Functional properties were analyzed based on emulsifying and foaming properties.The potential allergenicity was evaluated by in vitro and in vivo methods.The results found that oxidation altered structures of the proteins and resulted in the formation of cross-linked protein polymers.The emulsion and foaming properties of the proteins were improved after oxidation.The IgE-binding capacity of 7 S and11 S reduced after oxidation.KU812 cell assays showed that both histamine and IL-4 release decreased after oxidation treatment.A mouse model showed that oxidation reduced the IgE,IgG,and IgG1 levels,as well as reduced histamine and mMCP-1 release in serum,which might suppress the allergic reaction.In conclusion,the lipid peroxidation treatment likely causes changes to the functional properties of soybean,decreasing the potential allergenicity of 7 S and 11 S.
基金supported by the National Key Technologies Research and Development Program(No. 2012BAD34B04)Ministry of Science and Technology of the People's Republic of China
文摘To simplify the assessment method of soy protein isolate (SPI) functionalities, the viscosity and functionalities of commercial SPI products were studied. Viscosity value (y) increases With increasing concentration (x) and exhibits a highly significant correlation with the exponential equation y = a. ebx. The b values of products are gradually enhanced from dispersion, emulsion and injected to gel type. Products with low b values (〈0.2), and high dispersivity were dispersion-type. Products having high b values (〉0.4) and gel springiness were gel-type. The other products with centered b value (0.2-0.4), high solubility and emulsifying capacity were emulsion-type.
基金the National Natural Science Foundation of China (31871748)Natural Science Foundation of Henan Province (242300421317, 242300420462)+2 种基金the Project of Henan University of Technology Excellent Young Teachers (21420064)Zhengzhou Science and Technology Collaborative Innovation Project (21ZZXTCX17)China Postdoctoral Science Fundation (2021M701112) for the financial support。
文摘Soybean protein has high nutritional value, but its functional properties are easily affected by external factors,which limits its application in food industry. In the study, soybean protein isolate(SPI) was modified by dry heat glycation of galactooligosaccharides(GOS). The gel properties, antioxidant properties and structural changes of SPI-GOS conjugates were investigated. The application of SPI-GOS conjugates in noodles was also explored. The results observed that the glycation degree of SPI increased with the increasing reaction time. SDS-PAGE and spectral analysis showed the changes of spatial conformation of SPI after glycation. The antioxidant activity of SPI increased after glycation and DPPH radical scavenging activity of SPI-GOS peaked at 48 h of reaction. The hardness, elasticity and resilience of soybean protein gel reached their relative maximum at 48 h, 48 h and 12 h of glycation reaction, respectively. Moreover, the appropriate addition of glycated SPI improved the quality of noodles. The noodles with 4% addition of SPI-GOS had higher hardness, elasticity and tensile properties. This study will provide an effective method to modify soybean protein and expand the use of soybean protein in food industry.
文摘HPP (high pressure processing) is one of the novel technologies to produce microbiologically safe food. HPP is a non-thermal food processing method, wherein the food is subjected to a very high pressure ranging between 100-800 MPa in order to prevent undesirable chemical and microbiological reactions, and hence, prolong the shelf-life. HPP is also called as "high hydrostatic processing, ultra-high pressure processing or isostatic processing". In dairy products, HHP has the potential to modify the functional properties of proteins, polysaccharides and alter biochemical reactions without significantly affecting the nutritional and sensory properties. HPP treatment induces significant changes in milk components particularly in proteins (whey proteins and caseins), as well as on their applicability in innovative dairy productions. HPP influences technological properties of various milk products such as firmness, water-holding capacity of the gel and network structure, cheese yield, rennet coagulation time and ripening.
基金The authors are thankful to Rice Research Centres of Anantnag and Kupwara,J&K for helping us in getting paddy.
文摘The present investigation was aimed to study functional properties,antioxidant activity and in-vitro digestibility characteristics of brown and polished flours obtained from four rice cultivars(SR-4,K-39,Mushq Budij and Zhag)of Kashmir.Brown rice flours had higher total dietary fibre(3.08%-3.68%),oil absorption(116.0%-139.0%),emulsion capacity(4.78%-9.52%),emulsion stability(87.46%-99.93%)and resistant starch content(6.80%-9.00%)than polished flours.However,polished flours presented greater water absorption(102.0%-122.0%),foaming capacity(8.00%-13.63%),apparent amylose(19.16%-22.62%),peak(2260.0-2408.0 cP),trough(1372.0-1589.0 cP)and breakdown(714.0-978.0 cP)viscosities than their brown counterparts.Brown rice flours depicted highest total phenolic content(4.40-6.40 mg GAE/g)and inhibition of lipid peroxidation(19.50%-33.20%).However,equilibrium starch hydrolysis percentage(C∞)and predicted glycemic index of brown rice flours were lower than their polished counterparts.Among rice cultivars,brown Zhag flour had the highest total dietary fibre(3.68%),emulsion capacity(9.52%),emulsion stability(99.93%),resistant starch(9.00%),DPPH radical scavenging activity(85.45%)and inhibition of lipid peroxidation(33.20%),respectively.Emulsion capacity and emulsion stability were positively correlated with protein content of rice flours.However,peak,trough,breakdown and setback viscosities were negatively correlated with protein and fat contents of rice flour.The present investigation will be helpful in identifying nutritive role of rice flours from studied cultivars in human diet.