This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, ...This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.展开更多
A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of...A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.展开更多
In this paper, the hybrid function projective synchronization (HFPS) of different chaotic systems with uncertain periodically time-varying parameters is carried out by Fourier series expansion and adaptive bounding te...In this paper, the hybrid function projective synchronization (HFPS) of different chaotic systems with uncertain periodically time-varying parameters is carried out by Fourier series expansion and adaptive bounding technique. Fourier series expansion is used to deal with uncertain periodically time-varying parameters. Adaptive bounding technique is used to compensate the bound of truncation errors. Using the Lyapunov stability theory, an adaptive control law and six parameter updating laws are constructed to make the states of two different chaotic systems asymptotically synchronized. The control strategy does not need to know the parameters thoroughly if the time-varying parameters are periodical functions. Finally, in order to verify the effectiveness of the proposed scheme, the HFPS between Lorenz system and Chen system is completed successfully by using this scheme.展开更多
The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate funct...The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.展开更多
This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium poin...This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium point; a periodic orbit, or even a chaotic attractor in the phase space. Based on LaSalle's invariance set principle, the adaptive control law is derived to make the states of two chaotic systems function projective synchronized. Some numerical examples are also given to show the effectiveness of the proposed method.展开更多
We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks wi...We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.展开更多
In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic sy...In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic system. With the aid of symbolic-numeric computation, we use the scheme to study the function projective synchronization between 2D Lorenz discrete-time system and Hdnon discrete-time system, as well as that between 3D discrete-time hyperchaotic system and Henon-like map via three scalar controllers, respectively. Moreover numerical simulations are used to verify the effectiveness of the proposed scheme.展开更多
This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response ...This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.展开更多
This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control schem...This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control scheme,a general method for modified function projective synchronization is proposed. Numerical simulations on chaotic Rssler system and hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme.展开更多
We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function ma...We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function matrix. In this paper, a systematic scheme is explored to investigate the function projective synchronization of two identical discrete-time hyperchaotic systems using the backstepping method. Additionally, FPS of two different hyperchaotic systems is also realized. Numeric simulations are given to verify the effectiveness of our scheme.展开更多
Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scalin...Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.展开更多
This paper investigates the function cascade synchronization of chaos system. Combining cascade synchronization scheme, parametric adaptive control and projective synchronization scheme, it proposes a new function cas...This paper investigates the function cascade synchronization of chaos system. Combining cascade synchronization scheme, parametric adaptive control and projective synchronization scheme, it proposes a new function cascade synchronization scheme to address a generalized-type synchronization problem of three famous chaotic systems: the Lorenz system, Liu system and RSssler system, the states of two identical chaotic systems with unknown parameters can be asymptotically synchronized by choosing different special suitable error functions. Numerical simulations are used to verify the effectiveness of the proposed synchronization techniques.展开更多
基金supported by the Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundation under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A61001National Basic Research Program of China (973 Program 2007CB814800)Programme for Changjiang Scholars and Innovative Research Team in University (IRT0734)K.C.Wong Magna Fund in Ningbo University
文摘This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
基金*The project supported by the Natural Science Foundations of Zhejiang Province under Grant No. Y604056 and the Doctoral Foundation of Ningbo City under Grant No. 2005A61030
文摘A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.
基金supported by National Natural Science Foundation of China (No.60974139)Fundamental Research Funds for the Central Universities (No.72103676)
文摘In this paper, the hybrid function projective synchronization (HFPS) of different chaotic systems with uncertain periodically time-varying parameters is carried out by Fourier series expansion and adaptive bounding technique. Fourier series expansion is used to deal with uncertain periodically time-varying parameters. Adaptive bounding technique is used to compensate the bound of truncation errors. Using the Lyapunov stability theory, an adaptive control law and six parameter updating laws are constructed to make the states of two different chaotic systems asymptotically synchronized. The control strategy does not need to know the parameters thoroughly if the time-varying parameters are periodical functions. Finally, in order to verify the effectiveness of the proposed scheme, the HFPS between Lorenz system and Chen system is completed successfully by using this scheme.
基金supported by the National Natural Science Foundation of China under Grant Nos.10735030 and 90718041Shanghai Leading Academic Discipline Project under Grant No.B412+1 种基金Zhejiang Provincial Natural Science Foundations of China under Grant No.Y604056,Doctoral Foundation of Ningbo City under Grant No.2005A61030Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0734
文摘The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No.61075060)the Science and Technology Research Key Program for the Education Department of Hubei Province of China (Grant No.D20105001)the Open Project of State Key Laboratory of Industrial Control Technology,China (Grant No.ICT1007)
文摘This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium point; a periodic orbit, or even a chaotic attractor in the phase space. Based on LaSalle's invariance set principle, the adaptive control law is derived to make the states of two chaotic systems function projective synchronized. Some numerical examples are also given to show the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Grant No.70871056)the Fundamental Research Funds for the Central Universities,China(Grant No.2013B10014)
文摘We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.
基金National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+3 种基金Natural Science Foundation of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A61030the Program for Changjiang Scholars and Innovative Research Team in Universities under Grant No.IRT0734K.C.Wong Magna Fund in Ningbo University
文摘In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic system. With the aid of symbolic-numeric computation, we use the scheme to study the function projective synchronization between 2D Lorenz discrete-time system and Hdnon discrete-time system, as well as that between 3D discrete-time hyperchaotic system and Henon-like map via three scalar controllers, respectively. Moreover numerical simulations are used to verify the effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60875036)the Program for Innovative Research Team of Jiangnan University
文摘This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.
基金Sponsored by the Scientific Research Fund of Heilongjiang Provincial Education Department of China(Grant No. 11551088)Youth Foundation ofHarbin University of Science and Technology(Grant No. 2009YF018)
文摘This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control scheme,a general method for modified function projective synchronization is proposed. Numerical simulations on chaotic Rssler system and hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme.
文摘We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function matrix. In this paper, a systematic scheme is explored to investigate the function projective synchronization of two identical discrete-time hyperchaotic systems using the backstepping method. Additionally, FPS of two different hyperchaotic systems is also realized. Numeric simulations are given to verify the effectiveness of our scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.11371049)the Science Foundation of Beijing Jiaotong University(Grant Nos.2011JBM130 and 2011YJS076)
文摘Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No 10735030)Zhejiang Provincial Natural Science Foundations of China (Grant No Y604056)+1 种基金Doctoral Foundation of Ningbo City, China (Grant No 2005A61030)Shanghai Leading Academic Discipline Project, China (Grant No B412)
文摘This paper investigates the function cascade synchronization of chaos system. Combining cascade synchronization scheme, parametric adaptive control and projective synchronization scheme, it proposes a new function cascade synchronization scheme to address a generalized-type synchronization problem of three famous chaotic systems: the Lorenz system, Liu system and RSssler system, the states of two identical chaotic systems with unknown parameters can be asymptotically synchronized by choosing different special suitable error functions. Numerical simulations are used to verify the effectiveness of the proposed synchronization techniques.