In the data encryption standard (DES) algorithm, there exist several bit-switching functions, including permutations, expansion, and permuted choices. They are generally presented in the form of matrixes and realize...In the data encryption standard (DES) algorithm, there exist several bit-switching functions, including permutations, expansion, and permuted choices. They are generally presented in the form of matrixes and realized by using table look-up technique in the implementation of the cryptosystem. This paper presents explicit formulas for the initial permutation IP, its inverse IP-1 , the expansion function E, and the permuted choice PC_1. It also gives the program realizations of these functions in C++ applying these formulas. With the advantage of the omission of the storage space for these matrixes and the tedious inputs of tables in the implementations of DES, our experimental results shows that the explicit formulas are useful in some situations, such as wireless sensor networks where the memory capacity is limited, especially when the size of file for encrypting is not too large, preferably smaller than 256KB.展开更多
This paper is sequel to the authors paper [18]. By using the generalized Burchnall-Chaundy operator method, the authors are aiming at deriving certain decomposition formulas for some interesting special cases of Kampe...This paper is sequel to the authors paper [18]. By using the generalized Burchnall-Chaundy operator method, the authors are aiming at deriving certain decomposition formulas for some interesting special cases of Kampe de Feriets series of double hypergeometric series F;.展开更多
In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special c...In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special cases.We also give the quantitative estimations for the general formulae.展开更多
Is this paper we shall give cm asymptotic expansion formula of the kernel functim for the Quasi Faurier-Legendre series on an ellipse, whose error is 0(1/n2) and then applying it we shall sham an analogue of an exact ...Is this paper we shall give cm asymptotic expansion formula of the kernel functim for the Quasi Faurier-Legendre series on an ellipse, whose error is 0(1/n2) and then applying it we shall sham an analogue of an exact result in trigonometric series.展开更多
This paper is a further continuation of the paper [1]. In the present paper Mellin transform and Miints formula of weak functions in complex domain will be treated.
In this paper we obtained the asymptotic formula of the orthogonal rational function on the unit circle with respect to the weight function μ(z) with preasigned poles, which are in the exterior of the unit disk.
In this paper, we use the Mittag-Leffler addition formula to solve the Green function of generalized time fractional diffusion equation in the whole plane and prove the convergence of the Green function.
The aim of this research paper is to derive two extension formulas for Lauricella’s function of the second kind of several variables with the help of generalized Dixon’s theorem on the sum of the series obtain...The aim of this research paper is to derive two extension formulas for Lauricella’s function of the second kind of several variables with the help of generalized Dixon’s theorem on the sum of the series obtained by Lavoie et al. [1]. Some special cases of these formulas are also deduced.展开更多
Very recently Atash and Al-Gonah [1] derived two extension formulas for Lauricella’s function of the second kind of several variables and . Now in this research paper we derive two families of transformation formulas...Very recently Atash and Al-Gonah [1] derived two extension formulas for Lauricella’s function of the second kind of several variables and . Now in this research paper we derive two families of transformation formulas for the first kind of Lauricella’s function of several variables and with the help of generalized Dixon’s theorem on the sum of the series obtained earlier by Lavoie et al. [2]. Some new and known results are also deduced as applications of our main formulas.展开更多
This work shows that each kind of Chebyshev polynomials may be calculated from a symbolic formula similar to the Lucas formula for Bernoulli polynomials. It exposes also a new approach for obtaining generating functio...This work shows that each kind of Chebyshev polynomials may be calculated from a symbolic formula similar to the Lucas formula for Bernoulli polynomials. It exposes also a new approach for obtaining generating functions of them by operator calculus built from the derivative and the positional operators.展开更多
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
基金Supported by the National Natural Science Foundation of China (61272045)Natural Science Foundation of Outstanding Youth Team Project of Zhejiang Province (R1090138)Project of the State Key Laboratory of Information Security (Institute of Information Engineering, Chinese Academy of Sciences, Beijing)
文摘In the data encryption standard (DES) algorithm, there exist several bit-switching functions, including permutations, expansion, and permuted choices. They are generally presented in the form of matrixes and realized by using table look-up technique in the implementation of the cryptosystem. This paper presents explicit formulas for the initial permutation IP, its inverse IP-1 , the expansion function E, and the permuted choice PC_1. It also gives the program realizations of these functions in C++ applying these formulas. With the advantage of the omission of the storage space for these matrixes and the tedious inputs of tables in the implementations of DES, our experimental results shows that the explicit formulas are useful in some situations, such as wireless sensor networks where the memory capacity is limited, especially when the size of file for encrypting is not too large, preferably smaller than 256KB.
文摘This paper is sequel to the authors paper [18]. By using the generalized Burchnall-Chaundy operator method, the authors are aiming at deriving certain decomposition formulas for some interesting special cases of Kampe de Feriets series of double hypergeometric series F;.
文摘In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special cases.We also give the quantitative estimations for the general formulae.
文摘Is this paper we shall give cm asymptotic expansion formula of the kernel functim for the Quasi Faurier-Legendre series on an ellipse, whose error is 0(1/n2) and then applying it we shall sham an analogue of an exact result in trigonometric series.
文摘This paper is a further continuation of the paper [1]. In the present paper Mellin transform and Miints formula of weak functions in complex domain will be treated.
文摘In this paper we obtained the asymptotic formula of the orthogonal rational function on the unit circle with respect to the weight function μ(z) with preasigned poles, which are in the exterior of the unit disk.
文摘In this paper, we use the Mittag-Leffler addition formula to solve the Green function of generalized time fractional diffusion equation in the whole plane and prove the convergence of the Green function.
文摘The aim of this research paper is to derive two extension formulas for Lauricella’s function of the second kind of several variables with the help of generalized Dixon’s theorem on the sum of the series obtained by Lavoie et al. [1]. Some special cases of these formulas are also deduced.
文摘Very recently Atash and Al-Gonah [1] derived two extension formulas for Lauricella’s function of the second kind of several variables and . Now in this research paper we derive two families of transformation formulas for the first kind of Lauricella’s function of several variables and with the help of generalized Dixon’s theorem on the sum of the series obtained earlier by Lavoie et al. [2]. Some new and known results are also deduced as applications of our main formulas.
文摘This work shows that each kind of Chebyshev polynomials may be calculated from a symbolic formula similar to the Lucas formula for Bernoulli polynomials. It exposes also a new approach for obtaining generating functions of them by operator calculus built from the derivative and the positional operators.
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.