期刊文献+
共找到12,567篇文章
< 1 2 250 >
每页显示 20 50 100
Transplantation of human neural stem cells repairs neural circuits and restores neurological function in the stroke-injured brain
1
作者 Peipei Wang Peng Liu +7 位作者 Yingying Ding Guirong Zhang Nan Wang Xiaodong Sun Mingyue Li Mo Li Xinjie Bao Xiaowei Chen 《Neural Regeneration Research》 2026年第3期1162-1171,共10页
Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after inju... Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients. 展开更多
关键词 behavioral recovery circuit repair electrophysiological properties functional integration human neural stem cell transplantation infarction volume STROKE synaptic tracing
暂未订购
Application of principal component-radial basis function neural networks (PC-RBFNN) for the detection of water-adulterated bayberry juice by near-infrared spectroscopy 被引量:6
2
作者 Li-juan XIE Xing-qian YE Dong-hong LIU Yi-bin YING 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第12期982-989,共8页
Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was ap... Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice. 展开更多
关键词 Near-infrared (NIR) spectroscopy Principal component-radial basis function neural networks (PC-rbfNN) Bayberry juice ADULTERATION Chemometrics technique
在线阅读 下载PDF
基于IWOA-RBF神经网络预测的拖拉机线控液压转向系统传递函数参数辨识
3
作者 吕华伟 邓晓亭 +2 位作者 黄薛凯 孙晓旭 鲁植雄 《南京农业大学学报》 北大核心 2026年第1期197-213,共17页
[目的]拖拉机线控液压转向系统具有强非线性、时变等特性,为分析该系统运动学特性,需要建立线控液压转向系统动态模型。本文针对该问题,搭建了线控液压转向试验台架,提出利用系统参数辨识的方法作为线控液压转向系统建模方法。[方法]使... [目的]拖拉机线控液压转向系统具有强非线性、时变等特性,为分析该系统运动学特性,需要建立线控液压转向系统动态模型。本文针对该问题,搭建了线控液压转向试验台架,提出利用系统参数辨识的方法作为线控液压转向系统建模方法。[方法]使用鲸鱼优化算法(WOA)对线控液压转向系统的试验数据进行参数辨识,从而获得系统传递函数参数。为补全线控液压转向系统适用工况,采用RBF神经网络预测法对辨识得到的传递函数进行工况预测,得到线控液压转向系统动态传递函数。[结果]对辨识结果进行了试验对比验证,通过改进的鲸鱼优化算法优化得到的线控液压转向系统传递函数,在右转时与试验数据的均方根误差平均值为0.001334,在左转时与试验数据的均方根误差平均值为0.013440,通过RBF神经网络预测得到的线控液压转向系统全工况动态传递函数与试验数据的均方根误差在0.1左右。[结论]本文提出的动态模型可以精确描述线控液压转向模型的运动学特性,建模方法可行,对提高线控液压转向系统控制稳定性有重要的指导意义。 展开更多
关键词 拖拉机 线控液压转向 鲸鱼优化算法(WOA) 参数辨识 rbf神经网络 工况预测
在线阅读 下载PDF
Adaptive Neural Control for Hypersonic Vehicle Based on Barrier Lyapunov Function
4
作者 Hewei Zhao Chengcheng Wang Jing Sun 《Journal of Beijing Institute of Technology》 2025年第6期552-565,共14页
In this paper,an adaptive neural backstepping control method based on barrier Lyapunov function is proposed for hypersonic vehicle considering full state constraints.The longitudinal dynamic of hypersonic vehicle can ... In this paper,an adaptive neural backstepping control method based on barrier Lyapunov function is proposed for hypersonic vehicle considering full state constraints.The longitudinal dynamic of hypersonic vehicle can be divided into two subsystems,i.e.,altitude subsystem and velocity subsystem and the controllers are designed with backstepping method,respectively.In the designing process,the radial basis function neural networks are used to approximate the unknown nonlinear functions of longitudinal dynamic,therefore,the accuracy requirement of hypersonic vehicle model is largely reduced.In order to handle the explosion of complexity issues occurring in the backstepping method,a tracking differentiator is introduced to calculate the differential of virtual control law.The barrier Lyapunov function is constructed to overcome the full system dynamic state constraints and an auxiliary system is designed for overcome the input state saturation issue.The stability is carried out based on Lyapunov theory,and the signals of closed-loop system established are uniformly ultimately bounded.The simulation results show that the controller designed for hypersonic vehicle can guarantee the good tracking performance. 展开更多
关键词 hypersonic vehicle barrier Lyapunov function radial basis function neural network tracking differentiator
在线阅读 下载PDF
Propofol-Induced Moderate-Deep Sedation Modulates Pediatric Neural Activity:A Functional Connectivity Study
5
作者 Qiang Zheng Yiyu Zhang +2 位作者 Lin Zhang Jian Wang Jungang Liu 《iRADIOLOGY》 2025年第1期61-71,共11页
Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric... Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch. 展开更多
关键词 functional connectivity network moderate-deep sedation neural activity PEDIATRIC PROPOFOL
暂未订购
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
6
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
A Basis Function Generation Based Digital Predistortion Concurrent Neural Network Model for RF Power Amplifiers
7
作者 SHAO Jianfeng HONG Xi +2 位作者 WANG Wenjie LIN Zeyu LI Yunhua 《ZTE Communications》 2025年第1期71-77,共7页
This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a f... This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a feedforward neural network(FNN)and a convolutional neural network(CNN).The proposed model takes the basic elements that form the bases as input,defined by the generalized memory polynomial(GMP)and dynamic deviation reduction(DDR)models.The FNN generates the basis function and its output represents the basis values,while the CNN generates weights for the corresponding bases.Through the concurrent training of FNN and CNN,the hidden layer coefficients are updated,and the complex multiplication of their outputs yields the trained in-phase/quadrature(I/Q)signals.The proposed model was trained and tested using 300 MHz and 400 MHz broadband data in an orthogonal frequency division multiplexing(OFDM)communication system.The results show that the model achieves an adjacent channel power ratio(ACPR)of less than-48 d B within a 100 MHz integral bandwidth for both the training and test datasets. 展开更多
关键词 basis function generation digital predistortion generalized memory polynomial dynamic deviation reduction neural network
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
8
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer
9
作者 Mohammad Soleimani Amiri Sahbi Boubaker +1 位作者 Rizauddin Ramli Souad Kamel 《Computer Modeling in Engineering & Sciences》 2025年第9期3113-3133,共21页
Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe... Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons. 展开更多
关键词 Adaptive neural network controller disturbance observer upper-limb exoskeleton rehabilitation robotics Lyapunov stability radial basis function network
在线阅读 下载PDF
A radiomics approach for predicting gait freezing in Parkinson's disease based on resting-state functional magnetic resonance imaging indices:A cross-sectional study
10
作者 Miaoran Guo Hu Liu +6 位作者 Long Gao Hongmei Yu Yan Ren Yingmei Li Huaguang Yang Chenghao Cao Guoguang Fan 《Neural Regeneration Research》 2026年第4期1621-1627,共7页
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice... Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease. 展开更多
关键词 amplitude of low-frequency fluctuation degree centrality feedforward neural network freezing of gait machine learning parahippocampal gyrus Parkinson's disease receiver operating characteristic regional homogeneity resting-state functional magnetic resonance imaging
暂未订购
Neural function rebuilding on different bodies using microelectronic neural bridge technique 被引量:2
11
作者 沈晓燕 王志功 +3 位作者 吕晓迎 李文渊 赵鑫泰 黄宗浩 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期523-527,共5页
A microelectronic circuit is used to regenerate the neural signals between the proximal end and the distal end of an injured nerve.An experimental scheme is designed and carried out to verify the feasibility of the so... A microelectronic circuit is used to regenerate the neural signals between the proximal end and the distal end of an injured nerve.An experimental scheme is designed and carried out to verify the feasibility of the so-called microelectronic neural bridge(MNB).The sciatic signals of the source spinal toad which are evoked by chemical stimuli are used as source signals to stimulate the sciatic of the controlled spinal toad.The sciatic nerve signals of the source spinal toad,the regenerated sciatic signals in the controlled spinal toad,and the resulting electromyography(EMG)signals associated with the gastrocnemius muscle movements of the controlled spinal toad are displayed and recorded by an oscilloscope.By analyzing the coherence between the source sciatic nerve signals and the regenerated sciatic nerve signals and the coherence between the regenerated nerve signals and the EMG signals,it is proved that the regenerated sciatic nerve signals have a relationship with the source sciatic nerve signals and control shrinkage of the leg of the controlled toad. 展开更多
关键词 neural function regeneration electromy-ography(EMG) microelectronic neural bridge coherence function
在线阅读 下载PDF
RBF neural network regression model based on fuzzy observations 被引量:2
12
作者 朱红霞 沈炯 苏志刚 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期400-406,共7页
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu... A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy. 展开更多
关键词 radial basis function neural network rbfNN) fuzzy membership function imprecise observation regression model
在线阅读 下载PDF
INTERNET TRAFFIC DATA FLOW FORECAST BY RBF NEURAL NETWORK BASED ON PHASE SPACE RECONSTRUCTION 被引量:4
13
作者 陆锦军 王执铨 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期316-322,共7页
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n... Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy. 展开更多
关键词 chaos theory phase space reeonstruction Lyapunov exponent tnternet data flow radial basis function neural network
在线阅读 下载PDF
基于RBF网络的四旋翼无人机姿态鲁棒自适应反步滑模控制 被引量:4
14
作者 刘金华 王远 +1 位作者 张智轩 李涛 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期36-42,共7页
针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数... 针对存在干扰的四旋翼无人机姿态系统,设计了一种RBF网络鲁棒自适应反步滑模控制器.在反步滑模控制的基础上,通过RBF网络逼近和补偿标称控制律,采用神经网络最小参数学习法,取神经网络的权值上界估计作为神经网络的估计值,通过设计参数估计自适应律来代替神经网络权值的调整,并用Lyapunov理论证明系统的稳定性.仿真结果表明:该方法相比反步滑模控制方法,在有干扰的情况下,有更短的调节时间,更好的跟踪精度,验证了本方法具有更好的抗干扰性和鲁棒性. 展开更多
关键词 四旋翼无人机 姿态控制 反步滑模控制 rbf神经网络 鲁棒自适应控制
在线阅读 下载PDF
Model Identification of Water Purification Systems Using RBF Neural Network
15
作者 徐立新 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期293-395,296-298,共6页
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build... Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided. 展开更多
关键词 rbf neural network: identification OZONE biological activated carbon
在线阅读 下载PDF
联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制 被引量:1
16
作者 周阿连 于子茵 刘刚 《机械设计与制造》 北大核心 2025年第6期69-74,共6页
为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛... 为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛精度。设计改进的RBF神经网络,采用改进核FCM聚类算法(improved KFCM,IKFCM)初始化RBF神经网络中心,利用改进的PIO(improved PIO,IPIO)优化RBF神经网络参数配置。最后,利用IPIO和IKFCM优化后的RBF神经网络对PID参数进行自适应调整。与其它车速控制方法相比,所提方法车速控制精度提高了约1.2%,能够精准实现对机器人车速的控制。 展开更多
关键词 机器人 鸽群优化算法 rbf神经网络 PID控制 精度
在线阅读 下载PDF
Calibration Method Based on RBF Neural Networks for Soil Moisture Content Sensor 被引量:9
17
作者 杨敬锋 李亭 +1 位作者 卢启福 陈志民 《Agricultural Science & Technology》 CAS 2010年第2期140-142,共3页
Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content senso... Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content sensor and increase soil moisture content data collection and computational efficiency,this paper presents a RBF neural network calibration method of soil moisture content based on TDR3 soil moisture sensor and wireless sensor networks.Experiment results show that the calibration method is effective... 展开更多
关键词 Calibration Model Soil Moisture Sensor Wireless Sensor Networks rbf neural Networks
在线阅读 下载PDF
基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法 被引量:1
18
作者 夏向阳 岳家辉 +4 位作者 曾小勇 刘代飞 陈来恩 吕崇耿 夏永凯 《中国电机工程学报》 北大核心 2025年第2期638-649,I0020,共13页
锂离子电池剩余容量估计是电池管理系统中关键技术之一,也是实现锂离子电池安全稳定运行的前提。针对锂离子电池剩余容量有效估计问题,该文提出带外生输入的自回归模型(radial basis function-autoregressive exogenous,RBF-ARX)的锂离... 锂离子电池剩余容量估计是电池管理系统中关键技术之一,也是实现锂离子电池安全稳定运行的前提。针对锂离子电池剩余容量有效估计问题,该文提出带外生输入的自回归模型(radial basis function-autoregressive exogenous,RBF-ARX)的锂离子电池剩余容量估计方法,利用结构化非线性参数优化方法辨识模型参数,并将“老化信息”与“能量”相结合,基于小波包能量分析从电池充电电流/电压曲线中直接提取能量特征作为新健康特征,采用传递熵对新健康特征进行筛选以构成模型输入,实现锂离子电池剩余容量的有效估计;最后,基于NASA公开的锂离子电池老化数据,通过不同训练/测试样本比例、不同模型展开综合分析。结果表明,所提出的基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法与常用的数据驱动方法相比,误差指标中平均绝对误差、平均绝对百分比误差、均方根误差均保持在较低水平,具有良好的估计精度。 展开更多
关键词 锂离子电池 健康特征 传递熵 带外生输入的自回归模型 健康状态
原文传递
车辆主动悬架RBF神经网络的模型预测控制仿真研究 被引量:1
19
作者 顾苏怡 蒋昌华 《中国工程机械学报》 北大核心 2025年第3期410-414,共5页
为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,... 为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,利用RBF神经网络结构捕捉车辆主动悬架系统的复杂动态特性,通过对大量数据的学习和训练,能够快速建立主动悬架MPC参数,最终实现对车辆主动悬架系统的精确控制。利用Matlab软件对车辆主动悬架的车身加速度、悬架位移、轮胎位移进行仿真,评估车辆不同控制策略的行驶性能。结果显示:在路面信号激励下采用MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较大;采用RBF神经网络的MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较小。所提出的RBF神经网络MPC系统,能够增强车辆主动悬架抗干扰能力,从而保持车辆行驶的稳定性和舒适性。 展开更多
关键词 车辆 主动悬架 rbf神经网络 模型预测控制 仿真
在线阅读 下载PDF
基于改进RBF神经网络的台风风速预测研究
20
作者 李红丽 陶洪峰 《自动化仪表》 2025年第12期11-14,19,共5页
针对台风风速预测受复杂因素影响,呈现出高度非线性特征的问题,传统的单一预测模型预测精度较差。对仿射传播(AP)聚类和径向基函数(RBF)神经网络算法进行了研究,构建了一种改进的混合模型。借助AP聚类算法的自适应聚类特性,为RBF神经网... 针对台风风速预测受复杂因素影响,呈现出高度非线性特征的问题,传统的单一预测模型预测精度较差。对仿射传播(AP)聚类和径向基函数(RBF)神经网络算法进行了研究,构建了一种改进的混合模型。借助AP聚类算法的自适应聚类特性,为RBF神经网络提供了精确、稳定的初始化中心向量,显著增强了RBF神经网络的非线性拟合能力和预测精度。经试验对比证明,改进后的混合模型明显优于其他模型,不仅达到了预设的误差指标,还实现了更低的误差水平,避免了传统方法在复杂非线性问题中的局限性。该研究不仅为台风风速预测提供了新的技术,还可为其他涉及非线性预测的领域(如气象、水文、能源等)提供参考。该研究对相关学科的研究方法改进具有重要启示意义。 展开更多
关键词 仿射传播聚类 径向基函数神经网络 风速预测 台风 聚类中心 欧氏距离
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部