In this paper,key dimensions of a co-axial dual-mechanical-port flux-switching permanent magnet(CADMP-FSPM)machine for fuel-based extended range electric vehicles(ER-EVs),including split ratio,stator/rotor pole arcs,r...In this paper,key dimensions of a co-axial dual-mechanical-port flux-switching permanent magnet(CADMP-FSPM)machine for fuel-based extended range electric vehicles(ER-EVs),including split ratio,stator/rotor pole arcs,rotor yoke thickness,etc.,are analyzed and optimized.Firstly,the topologies and operation principles of an exampled 3-phase CADMP-FSPM are introduced briefly,in which an inner-rotor FSPM machine with 12-stator-slots/10-rotor-poles for high-speed generation and an outer-rotor FSPM machine with 12-stator-slots/22-rotor-poles for low-speed motoring are assembled co-axially.Then,the relationship between the key dimensions and electromagnetic performance,particularly for electromagnetic torque(power),of the CADMP-FSPM machine is studied by 2D-finite element analysis(FEA).Further,the reasonable matches of split ratio,rotor/stator pole arcs and rotor yoke are determined and the original CADMP-FSPM machine is optimized correspondingly.Finally,the static characteristics,including no-load PM flux-linkage,electro-motive-force(EMF),winding inductances,cogging torques and electromagnetic torques,of the original and optimized machines are compared by 2D-FEA.The results verify that the optimized CADMP-FSPM machine can exhibit improved torque characteristics than the original one,i.e.,the torque ripples of the inner and outer machines can be reduced by 22.7%and 4.7%,respectively,and the average torque of the inner and outer machines can be increased by 0.43Nm and 2Nm,respectively.展开更多
Intemational Vehicle Emissions (IVE) model funded by U.S. Environmental Protection Agency (USEPA) is designed to estimate emissions from motor vehicles in developing countries. In this study, the IVE model was eva...Intemational Vehicle Emissions (IVE) model funded by U.S. Environmental Protection Agency (USEPA) is designed to estimate emissions from motor vehicles in developing countries. In this study, the IVE model was evaluated by utilizing a dataset available from the remote sensing measurements on a large number of vehicles at five different sites in Hangzhou, China, in 2004 and 2005. Average fuel-based emission factors derived from the remote sensing measurements were compared with corresponding emission factors derived from IVE calculations for urban, hot stabilized condition. The results show a good agreement between the two methods for gasoline passenger cars' HC emission for all 1VE subsectors and technology classes. In the case of CO emissions, the modeled results were reasonably good, although systematically underestimate the emissions by almost 12%-50% for different technology classes. However, the model totally overestimated NOx emissions. The IVE NOx emission factors were 1.5-3.5 times of the remote sensing measured ones. The IVE model was also evaluated for light duty gasoline truck, heavy duty gasoline vehicles and motor cycles. A notable result was observed that the decrease in emissions from technology class State II to State I were overestimated by the IVE model compared to remote sensing measurements for all the three pollutants. Finally, in order to improve emission estimation, the adjusted base emission factors from local studies are strongly recommended to be used in the IVE model.展开更多
基金This work was supported by The National Basic Research Program(973 Program)(2013CB035603).
文摘In this paper,key dimensions of a co-axial dual-mechanical-port flux-switching permanent magnet(CADMP-FSPM)machine for fuel-based extended range electric vehicles(ER-EVs),including split ratio,stator/rotor pole arcs,rotor yoke thickness,etc.,are analyzed and optimized.Firstly,the topologies and operation principles of an exampled 3-phase CADMP-FSPM are introduced briefly,in which an inner-rotor FSPM machine with 12-stator-slots/10-rotor-poles for high-speed generation and an outer-rotor FSPM machine with 12-stator-slots/22-rotor-poles for low-speed motoring are assembled co-axially.Then,the relationship between the key dimensions and electromagnetic performance,particularly for electromagnetic torque(power),of the CADMP-FSPM machine is studied by 2D-finite element analysis(FEA).Further,the reasonable matches of split ratio,rotor/stator pole arcs and rotor yoke are determined and the original CADMP-FSPM machine is optimized correspondingly.Finally,the static characteristics,including no-load PM flux-linkage,electro-motive-force(EMF),winding inductances,cogging torques and electromagnetic torques,of the original and optimized machines are compared by 2D-FEA.The results verify that the optimized CADMP-FSPM machine can exhibit improved torque characteristics than the original one,i.e.,the torque ripples of the inner and outer machines can be reduced by 22.7%and 4.7%,respectively,and the average torque of the inner and outer machines can be increased by 0.43Nm and 2Nm,respectively.
基金Project supported by the Natural Science Foundation of ZhejiangProvince China (No. Y506126).
文摘Intemational Vehicle Emissions (IVE) model funded by U.S. Environmental Protection Agency (USEPA) is designed to estimate emissions from motor vehicles in developing countries. In this study, the IVE model was evaluated by utilizing a dataset available from the remote sensing measurements on a large number of vehicles at five different sites in Hangzhou, China, in 2004 and 2005. Average fuel-based emission factors derived from the remote sensing measurements were compared with corresponding emission factors derived from IVE calculations for urban, hot stabilized condition. The results show a good agreement between the two methods for gasoline passenger cars' HC emission for all 1VE subsectors and technology classes. In the case of CO emissions, the modeled results were reasonably good, although systematically underestimate the emissions by almost 12%-50% for different technology classes. However, the model totally overestimated NOx emissions. The IVE NOx emission factors were 1.5-3.5 times of the remote sensing measured ones. The IVE model was also evaluated for light duty gasoline truck, heavy duty gasoline vehicles and motor cycles. A notable result was observed that the decrease in emissions from technology class State II to State I were overestimated by the IVE model compared to remote sensing measurements for all the three pollutants. Finally, in order to improve emission estimation, the adjusted base emission factors from local studies are strongly recommended to be used in the IVE model.